1
Describe the differences between a relation and a relation schema. What is a relational database schema?

A relation schema is a named relation defined by a set of attribute and domain name pairs. A relational database schema is a set of relation schemas, each with a distinct name.
2
Discuss the properties of a relation.

A relation has the following properties:

•
has a name that is distinct from all other relation names in the relational schema;

•
each cell contains exactly one atomic (single) value;

•
each attribute has a distinct name;

•
the values of an attribute are all from the same domain;

•
each tuple is distinct; there are no duplicate tuples;

•
the order of attributes has no significance;

•
the order of tuples has no significance, theoretically. (However, in practice, the order may affect the efficiency of accessing tuples.)

3
Discuss the differences between the candidate keys and the primary key of a relation. Explain what is meant by a foreign key. How do foreign keys of relations relate to candidate keys? Give examples to illustrate your answer.

The primary key is the candidate key that is selected to identify tuples uniquely within a relation. A foreign key is an attribute or set of attributes within one relation that matches the candidate key of some (possibly the same) relation.

The following tables form part of a database held in a relational DBMS:-

Hotel

(hotelNo, hotelName, city)

Room

(roomNo, hotelNo, type, price)

Booking

(hotelNo, guestNo, dateFrom, dateTo, roomNo)

Guest

(guestNo, guestName, guestAddress)

where
Hotel contains hotel details and hotelNo is the primary key;

Room contains room details for each hotel and (roomNo, hotelNo) forms the primary key;

Booking contains details of the bookings and (hotelNo, guestNo, dateFrom) forms the primary key;

and
Guest contains guest details and guestNo is the primary key.

4
Identify the foreign keys in this schema. Explain how the entity and referential integrity rules apply to these relations.

For each relation, the primary key must not contain any nulls.

Room is related to Hotel through the attribute hotelNo. Therefore, the hotelNo in Room should either be null or contain the number of an existing hotel in the Hotel relation. In this case study, it would probably be unacceptable to have a hotelNo in Room with a null value.

Booking is related to Hotel through the attribute hotelNo. Therefore, the hotelNo in Booking should either be null or contain the number of an existing hotel in the Hotel relation. However, because hotelNo is also part of the primary key, a null value for this attribute would be unacceptable. Similarly for guestNo. Booking is also related to Room through the attribute roomNo.

5 What is the difference between a procedural and non-procedural language? How would you classify the relational algebra and relational calculus?

Procedural language: a language that allows user to tell the system what data is needed and exactly how to retrieve the data.

Non-procedural language: a language that allows user to state what data is needed rather than how it is to be retrieved.

Informally, we may describe the relational algebra as a (high-level) procedural language: it can be used to tell the DBMS how to build a new relation from one or more relations in the database. Again, informally, we may describe the relational calculus as a non-procedural language: it can be used to formulate the definition of a relation in terms of one or more database relations.

6
What is the Relational Algebra?

• Relational algebra =

· a collection of operations each acting on one or two relations and producing one relation as result, and

· a language for combining those operations

• The algebra has played a central role in the relational model: algebraic operations

characterize high-level set-at-a-time access

• The algebra in practice

· it was never a real user language (calculus-based languages and SQL are

· simpler)

· its semantics is clear and a de facto standard

 a precise syntax for the algebra is more complicated than its semantics

7
Discuss the differences between the five Join operations: Theta join, Equijoin, Natural join, Outer join, and Semijoin. Give examples to illustrate your answer.

	Theta join
	R 3F S

	Produces a relation that contains tuples satisfying the predicate F from the Cartesian product of R and S.

	Equijoin
	R 3F S

	Produces a relation that contains tuples satisfying the predicate F (which only contains equality comparisons) from the Cartesian product of R and S.

	Natural join
	R 3 S

	An Equijoin of the two relations R and S over all common attributes x. One occurrence of each common attribute is eliminated.

	(Left) Outer join
	R 5 S

	A join in which tuples from R that do not have matching values in the common attributes of S are also included in the result relation.

	Semijoin
	R 1F S
	Produces a relation that contains the tuples of R that participate in the join of R with S.

8
Compare and contrast the tuple relational calculus with domain relational calculus. In particular, discuss the distinction between tuple and domain variables.

In the tuple relational calculus, we use variables that range over tuples in a relation. In the domain relational calculus, we also use variables but in this case the variables take their values from domains of attributes rather than tuples of relations

Notes: Relational Algebra Operators
Basic operations:

· Selection () Selects a subset of rows from relation.

· Projection () Deletes unwanted columns from relation.

· Cross-product () Allows us to combine two relations.

· Set-difference () Tuples in reln. 1, but not in reln. 2.

· Union () Tuples in reln. 1 and in reln. 2.

Additional operations:

· Intersection, join, division, renaming: Not essential, but(very!) useful.

9
Describe the relations that would be produced by the following relational algebra operations:

Hotel

(hotelNo, hotelName, city)

Room

(roomNo, hotelNo, type, price)

Booking

(hotelNo, guestNo, dateFrom, dateTo, roomNo)

Guest

(guestNo, guestName, guestAddress)

a) (hotelNo (price  50 (Room))

This will produce a relation with a single attribute (hotelNo) giving the number of those hotels with a room price greater than £50.

b) Hotel.hotelNo  Room.hotelNo(Hotel  Room)

This will produce a join of the Hotel and Room relations containing all the attributes of both Hotel and Room (there will be two copies of the hotelNo attribute). Essentially this will produce a relation containing all rooms at all hotels.

c) (hotelName (Hotel 3 Hotel.hotelNo  Room.hotelNo (price  50 (Room)))

This will produce a join of Hotel and those tuples of Room with a price greater than £50. Essentially this will produce a relation containing all hotel names with a room price above £50.

d) Guest 5 (dateTo (‘1-Jan-2002’ (Booking))

This will produce a (left outer) join of Guest and those tuples of Booking with an end date (dateTo) greater than or equal to 1-Jan-2002. All guests who don’t have a booking with such a date will still be included in the join. Essentially this will produce a relation containing all guests and show the details of any bookings they have beyond 1-Jan-2002.

e) Hotel 1 Hotel.hotelNo  Room.hotelNo (price  50 (Room)))

This will produce a (semi) join of Hotel and those tuples of Room with a price greater than £50. Only those Hotel attributes will be listed. Essentially this will produce a relation containing all the details of all hotels with a room price above £50.

f) (guestName, hotelNo (Booking 3 Booking.guestNo  Guest.guestNo Guest) (

(hotelNo (city ’London’(Hotel))

This will produce a relation containing the names of all guest who have booked all hotels in London.

10
Provide the equivalent tuple relational calculus and domain relational calculus expressions for each of the relational algebra queries given

Hotel

(hotelNo, hotelName, city)

Room

(roomNo, hotelNo, type, price)

Booking

(hotelNo, guestNo, dateFrom, dateTo, roomNo)

Guest

(guestNo, guestName, guestAddress)

a) (hotelNo (price  50 (Room))

TRC:
{R.hotelNo | Room(R)  R.price  50}

DRC:
{hotelNo | (rNo, typ, prce) (Room (rNo, hotelNo, typ, prce)  prce  50)}

b) Hotel.hotelNo  Room.hotelNo(Hotel  Room)

TRC:
{H, R | Hotel(H)  (R) (Room(R)  (H.hotelNo  R.hotelNo))}

DRC:
{hNo, hName, cty, rNo, hNo1, typ, prce | (Hotel(hNo, hName, cty)  Room(rNo, hNo1, typ, prce)(hNo = hNo1))}

c) (hotelName (Hotel 3 Hotel.hotelNo  Room.hotelNo (price  50 (Room)))

TRC:
{H.hotelName | Hotel(H)  (R) (Room(R)  (H.hotelNo  R.hotelNo) 

(R.price > 50))}

DRC:
{hotelName | (hNo, cty, rNo, hNo1, typ, prce)

(Hotel(hNo, hotelName, cty)  Room(rNo, hNo1, typ, prce)(hNo = hNo1) 

(prce > 50))}

d) Guest 5 (dateTo (‘1-Jan-2002’ (Booking))

TRC:
{G.guestNo, G.guestName, G.guestAddress, B.hotelNo, B.dateFrom,

B.dateTo, B.roomNo | Guest(G) ((B) (Booking(B) 

(G.guestNo  B.guestNo)  (B.dateTo > ‘1-Jan-2002’))}

DRC:
{guestNo, guestName, guestAddress, hotelNo, dateFrom, dateTo, roomNo |

(gNo1) (Guest(guestNo, guestName, guestAddress) (

Booking(hotelNo, gNo1, dateFrom, dateTo, roomNo)

(guestNo = gNo1) (dateTo (‘1-Jan-2002’)))}

e) Hotel 1 Hotel.hotelNo  Room.hotelNo (price  50 (Room)))

TRC:
{H.hotelNo, H.hotelName, H.city | Hotel(H)  (R) (Room(R) 

(H.hotelNo  R.hotelNo)  (R.price > 50))}

DRC:
{hotelNo, hotelName, city | (rNo, hNo1, typ, prce)

(Hotel(hotelNo, hotelName, city)  Room(rNo, hNo1, typ, prce)

(hotelNo = hNo1)  (prce > 50))}

f) (guestName, hotelNo (Booking 3 Booking.guestNo  Guest.guestNo Guest) (

(hotelNo (city ’London’(Hotel))

TRC:
{G.guestName | Guest(G) ((H) (Hotel(H) 

(H.city = ‘London’)  (((B) (Booking(B) 

G.guestNo  B.guestNo H.hotelNo  B.hotelNo))))}

DRC:
{guestName | (gNo, gName, gAddress, hNo, gNo1, dFrom, dTo, rNo,

hName, cty, hNo1, typ, prce) ((Hotel(hNo, hName, cty) 

(cty = ‘London’) Guest(gNo, gName, gAddress)

Booking(hNo1, gNo1, dFrom, dTo, rNo) 

(gNo = gNo1) (hNo = hNo1)))}

