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ABSTRACT
This is the first in a series of short books on probability theory and random processes for

biomedical engineers. This text is written as an introduction to probability theory. The goal was

to prepare students, engineers and scientists at all levels of background and experience for the

application of this theory to a wide variety of problems—as well as pursue these topics at a more

advanced level. The approach is to present a unified treatment of the subject. There are only

a few key concepts involved in the basic theory of probability theory. These key concepts are

all presented in the first chapter. The second chapter introduces the topic of random variables.

Later chapters simply expand upon these key ideas and extend the range of application. A

considerable effort has been made to develop the theory in a logical manner—developing

special mathematical skills as needed. The mathematical background required of the reader

is basic knowledge of differential calculus. Every effort has been made to be consistent with

commonly used notation and terminology—both within the engineering community as well

as the probability and statistics literature. Biomedical engineering examples are introduced

throughout the text and a large number of self-study problems are available for the reader.

KEYWORDS
Probability Theory, Random Processes, Engineering Statistics, Probability and Statistics for

Biomedical Engineers, Statistics.
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Preface

This is the first in a series of short books on probability theory and random processes for

biomedical engineers. This text is written as an introduction to probability theory. The goal was

to prepare students at the sophomore, junior or senior level for the application of this theory to a

wide variety of problems—as well as pursue these topics at a more advanced level. Our approach

is to present a unified treatment of the subject. There are only a few key concepts involved in the

basic theory of probability theory. These key concepts are all presented in the first chapter. The

second chapter introduces the topic of random variables. Later chapters simply expand upon

these key ideas and extend the range of application.

A considerable effort has been made to develop the theory in a logical manner—

developing special mathematical skills as needed. The mathematical background required of the

reader is basic knowledge of differential calculus. Every effort has been made to be consistent

with commonly used notation and terminology—both within the engineering community as

well as the probability and statistics literature.

The applications and examples given reflect the authors’ background in teaching prob-

ability theory and random processes for many years. We have found it best to introduce this

material using simple examples such as dice and cards, rather than more complex biological

and biomedical phenomena. However, we do introduce some pertinent biomedical engineering

examples throughout the text.

Students in other fields should also find the approach useful. Drill problems, straightfor-

ward exercises designed to reinforce concepts and develop problem solution skills, follow most

sections. The answers to the drill problems follow the problem statement in random order.

At the end of each chapter is a wide selection of problems, ranging from simple to difficult,

presented in the same general order as covered in the textbook.

We acknowledge and thank William Pruehsner for the technical illustrations. Many of the

examples and end of chapter problems are based on examples from the textbook by Drake [9].
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1

C H A P T E R 1

Introduction

We all face uncertainty. A chance encounter, an unpredicted rain or something more serious

such as an auto accident or illness. Ordinarily, the uncertainty faced in our daily routine is never

quantified and is left as a feeling or intuition. In engineering applications, however, uncertainty

must be quantitatively defined, and analyzed in a mathematically rigorous manner resulting in

an appropriate and consistent solution. Probability theory provides the tools to analyze, in a

deductive manner, the nondeterministic or random aspects of a problem. Our goal is to develop

this theory in an axiomatic framework and to demonstrate how it can be used to solve many

practical problems in electrical engineering.

In this first chapter, we introduce the elementary aspects of probability theory upon which

the following chapter on random variables and chapters in subsequent short books are based.

The discussion of probability theory in this book provides a strong foundation for continued

study in virtually every field of biomedical engineering, and many of the techniques developed

may also be applied to other disciplines.

The theory of probability provides procedures for analyzing random phenomena, phe-

nomena which exhibit behavior that is unpredictable or cannot be determined exactly. Moreover,

understanding probability theory is essential before one can use statistics. An easy way to ex-

plain what is meant by probability theory is to examine several physical situations that lead to

probability theory problems. First consider tossing a fair coin and predicting the outcome of

the toss. It is impossible to exactly predict the outcome of the coin flip, so the most we can

do is state a chance of our prediction occurring. Next, consider telemetry or a communication

system. The signal received consists of the message and/or data plus an undesired signal called

thermal noise which is heard as a hiss. The noise is caused by the thermal or random motion

of electrons in the conducting media of the receiver—wires, resistors, etc. The signal received

also contains noise picked up as the signal travels through the atmosphere. Note that it is im-

possible to exactly compute the value of the noise caused by the random motion of the billions

of charged particles in the receiver’s amplification stages or added in the environment. Thus, it

is impossible to completely remove the undesired noise from the signal. We will see, however,

that probability theory provides a means by which most of the unwanted noise is removed.
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From the previous discussion, one might argue that our inability to exactly compute the

value of thermal noise at every instant of time is due to our ignorance, and that if a better model

of this phenomenon existed, then thermal noise could be exactly described. Actually, thermal

noise is well understood through extensive theoretical and experimental studies, and exactly

characterizing it would be at least as difficult as trying to exactly predict the outcome of a fair

coin toss: the process is inherently indeterminant.

On the other hand, one can take the point of view that one is really interested in the average

behavior of certain complicated processes—such as the average error rate of a communication

system or the efficacy of a drug treatment program. Probability theory provides a useful tool for

studying such problems even when one could argue whether or not the underlying phenomenon

is truly “random.”

Other examples of probability theory used in biomedical engineering include:

• Diffusion of ions across a cell membrane [3, 15]

• Biochemical reactions [15]

• Muscle model using the cross-bridge model for contraction [15]

• Variability seen in the genetic makeup of a species as DNA is transferred from one gener-

ation to another. That is, developing a mathematical model of DNA mutation processes

and reconstruction of evolutionary relationships between modern species [3, 20].

• Genetics [3]

• Medical tests [26]

• Infectious diseases [2, 3, 14]

• Neuron models and synaptic transmission [15]

• Biostatistics [26]

Because the complexity of the previous biomedical engineering models obscures the ap-

plication of probability theory, most of the examples presented are straightforward applications

involving cards and dice. After a concept is presented, some biomedical engineering examples

are introduced.

We begin with some preliminary concepts necessary for our study of probability theory.

Students familiar with set theory and the mathematics of counting (permutations and combi-

nations) should find it rapid reading, however, it should be carefully read by everyone. After

these preliminary concepts have been covered, we then turn our attention to the axiomatic

development of probability theory.
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1.1 PRELIMINARY CONCEPTS
We begin with a discussion of set theory in order to establish a common language and notation.

While much of this material is already familiar to you, we also want to review the basic set

operations which are important in probability theory. As we will see, the definitions and concepts

presented here will clarify and unify the mathematical foundations of probability theory. The

following definitions and operations form the basics of set theory.

Definition 1.1.1. A set is an unordered collection of objects. We typically use a capital letter to denote

a set, listing the objects within braces or by graphing. The notation A = {x : x > 0, x ≤ 2} is read

as “the set A contains all x such that x is greater than zero and less than or equal to two.” The notation

ζ ∈ A is read as “the object zeta is in the set A.” Two sets are equal if they have exactly the same objects

in them; i.e., A = B if A contains exactly the same elements that are contained in B.

The null set, denoted ∅, is the empty set and contains no objects.

The universal set, denoted S, is the set of all objects in the universe. The universe can be anything

we define it to be. For example, we sometimes consider S = R, the set of all real numbers.

If every object in set A is also an object in set B, then A is a subset of B. We shall use the

notation A ⊂ B to indicate that A is a subset of B. The expression B ⊃ A (read as “ A contains B ”)

is equivalent to A ⊂ B.

The union of sets A and B, denoted A ∪ B, is the set of objects that belong to A or B or both;

i.e., A ∪B = {ζ : ζ ∈ A or ζ ∈ B} .

The intersection of sets A and B, denoted A ∩ B, is the set of objects common to both A and

B; i.e ., A ∩ B = {
ζ : ζ ∈ A and ζ ∈ B

}
.

The complement of a set A, denoted Ac, is the collection of all objects in S not included in

A; i.e ., Ac = {ζ ∈ S : ζ /∈ A} .

These definitions and relationships among sets are illustrated in Fig. 1.1. Such dia-

grams are called Venn diagrams. Sets are represented by simple plane areas within the universal

set, pictured as a rectangle. Venn diagrams are important visual aids which may help us to

understand relationships among sets; however, proofs must be based on definitions and the-

orems. For example, the above definitions can be used to show that if A ⊂ B and B ⊂ A

then A = B; this fact can then be used whenever it is necessary to show that two sets are

equal.

Theorem 1.1.1. Let A ⊂ B and B ⊂ A. Then A = B.

Proof. We first note that the empty set is a subset of any set. If A = ∅ then B ⊂ A implies

that B = ∅. Similarly, if B = ∅ then A ⊂ B implies that A = ∅.

The theorem is obviously true if A and B are both empty.
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(a) Universal Set  S.

S

S

S

S

S

(b) Set A.

(c) Set B. (d) Set A.c

(e) Set  A     B.

Ac

A

B

S

(f) Set  A     B.

FIGURE 1.1: Venn diagrams

Assume A ⊂ B and B ⊂ A, and that A and B are nonempty. Since A ⊂ B, if ζ ∈ A then

ζ ∈ B. Since B ⊂ A, if ζ ∈ B then ζ ∈ A. We conclude that A = B. �

The converse of the above theorem is also true: If A = B then A ⊂ B and B ⊂ A.

Whereas a set is an unordered collection of objects, a set can be an unordered collection

of ordered objects. The following examples illustrate common ways of specifying sets of two-

dimensional real numbers.

Example 1.1.1. Let A = {(x, y) : y − x = 1} and B = {(x, y) : x + y = 1}. Find the set

A ∩ B. The notation (x, y) denotes an ordered pair.

Solution. A pair (x, y) ∈ A ∩ B only if y = 1 + x and y = 1 − x; consequently, x = 0, y = 1,

and

A ∩ B = {(x, y) : x = 0, y = 1}. �

Example 1.1.2. Let A={(x, y) : y ≤ x}, B = {(x, y) : x ≤ y + 1}, C = {(x, y) : y < 1}, and

D = {(x, y) : 0 ≤ y}. Find and sketch E = A ∩ B, F = C ∩ D, G = E ∩ F, and H =
{(x, y) : (−x, y + 1) ∈ G}.

Solution. The solutions are easily found with the aid of a few quick sketches. First, sketch

the boundaries of the given sets A, B, C , and D. If the boundary of the region is included in
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the set, it is indicated with a solid line. If the “boundary” is not included, it is indicated with a

dotted line in the sketch.

We have

E = A ∩ B = {(x, y) : x − 1 ≤ y ≤ x}

and

F = C ∩ D = {(x, y) : 0 ≤ y < 1}.

The set G is the set of all ordered pairs (x, y) satisfying both x − 1 ≤ y ≤ x and 0 ≤
y < 1. Using 1− to denote a value just less than 1, the second inequality may be expressed as

0 ≤ y ≤ 1−. We may then express the set G as

G = {(x, y) : max{0, x − 1} ≤ y ≤ min{x, 1−}},

where max{a, b} denotes the maximum of a and b; similarly, min{a, b} denotes the minimum

of a and b.

The set H is obtained from G by folding about the y-axis and translating down one unit.

This can be seen from the definitions of G and H by noting that (x, y) ∈ H if (−x, y + 1) ∈ G ;

hence, we replace x with −x and y with y + 1 in the above result for G to obtain

H = {(x, y) : max{0, −x − 1} ≤ y + 1 ≤ min{−x, 1−}},

or

H = {(x, y) : max{−1, −x − 2} ≤ y ≤ min{−1 − x, 0−}}.

The sets are illustrated in Fig. 1.2. �

1.1.1 Operations on Sets

Throughout probability theory it is often required to establish relationships between sets. The

set operations ∪ and ∩ operate on sets in much the same way the operations + and × operate

on real numbers. Similarly, the special sets ∅ and S correspond to the additive identity 0

and the multiplicative identity 1, respectively. This correspondence between operations on sets

and operations on real numbers is made explicit by the theorem below, which can be proved

by applying the definitions of the basic set operations stated above. The reader is strongly

encouraged to carry out the proof.
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FIGURE 1.2: Sets for Example 1.1.2

Theorem 1.1.2 (Properties of Set Operations). Let A, B, and C be subsets of S. Then

Commutative Properties

A ∪ B = B ∪ A (1.1)

A ∩ B = B ∩ A (1.2)
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Associative Properties

A ∪ (B ∪ C) = (A ∪ B) ∪ C (1.3)

A ∩ (B ∩ C) = (A ∩ B) ∩ C (1.4)

Distributive Properties

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) (1.5)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (1.6)

De Morgan’s Laws

(A ∩ B)c = Ac ∪ Bc (1.7)

(A ∪ B)c = Ac ∩ Bc (1.8)

Identities involving ∅ and S

A ∪ ∅ = A (1.9)

A ∩ S = A (1.10)

A ∩ ∅ = ∅ (1.11)

A ∪ S = S (1.12)

Identities involving complementation

A ∩ Ac = ∅ (1.13)

A ∪ Ac = S (1.14)

(Ac )c = A (1.15)

Additional insight to operations on sets is provided by the correspondence between the

algebra of set inclusion and Boolean algebra. An element either belongs to a set or it does not.

Thus, interpreting sets as Boolean (logical) variables having values of 0 or 1, the ∪ operation as

the logical OR, the ∩ as the logical AND operation, and the c as the logical complement, any

expression involving set operations can be treated as a Boolean expression.

The following two theorems provide additional tools to apply when solving problems

involving set operations. The Principle of Duality reveals that about half of the set identities in

the above theorem are redundant. Note that a set identity is an expression which remains true

for arbitrary sets. The dual of a set identity is also a set identity. The dual of an arbitrary set

expression is not in general the same as the original expression.

Theorem 1.1.3 (Negative Absorption Theorem)

A ∪ (Ac ∩ B) = A ∪ B. (1.16)
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Proof. Using the distributive property,

A ∪ (Ac ∩ B) = (A ∪ Ac ) ∩ (A ∪ B)

= S ∩ (A ∪ B)

= A ∪ B. �

Theorem 1.1.4 (Principle of Duality). Any set identity remains true if the symbols

∪, ∩, S, and ∅

are replaced with the symbols

∩, ∪, ∅, and S,

respectively.

Proof. The proof follows by applying De Morgan’s Laws and renaming sets Ac , Bc , etc. as

A, B, etc. �

Example 1.1.3. Verify the following set identity:

A ∪ (Bc ∪ ((Ac ∪ B) ∩ C))c = A ∪ (B ∩ Cc ).

Solution. From the duality principle, the given expression is equivalent to

A ∩ (Bc ∩ ((Ac ∩ B) ∪ C))c = A ∩ (B ∪ Cc ).

Using the distributive property and applying De Morgan’s Law we obtain

(Bc ∩ ((Ac ∩ B) ∪ C))c = ((Bc ∩ Ac ∩ B) ∪ (Bc ∩ C))c

= ((Bc ∩ B ∩ Ac ) ∪ (Bc ∩ C))c

= ((∅ ∩ Ac ) ∪ (Bc ∩ C))c

= (Bc ∩ C)c

= B ∪ Cc ,

from which the desired result follows.

Of course, there are always alternatives for problem solutions. For this example, one could

begin by applying the distributive property as follows:

(Bc ∪ ((Ac ∪ B) ∩ C))c = ((Bc ∪ Ac ∪ B) ∩ (Bc ∪ C))c

= ((Bc ∪ B ∪ Ac ) ∩ (Bc ∪ C))c

= ((S ∪ Ac ) ∩ (Bc ∪ C))c

= (Bc ∪ C)c

= B ∩ Cc .
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Theorem 1.1.2 is easily extended to deal with any finite number of sets. To do this, we

need notation for the union and intersection of a collection of sets.

Definition 1.1.2. We define the union of a collection of sets (one can refer to such a collection of sets

as a “set of sets”)

{Ai : i ∈ I} (1.17)

by ⋃
i∈I

= {ζ ∈ S : ζ ∈ Ai for some i ∈ I} (1.18)

and the intersection of a collection of sets

{Ai : i ∈ I} (1.19)

by ⋂
i∈I

Ai = {ζ ∈ S : ζ ∈ Ai for every i ∈ I}. (1.20)

We note that if I = ∅ then ⋃
i∈I

Ai = ∅ (1.21)

and ⋂
i∈I

Ai = S. (1.22)

For example, if I = {1, 2, . . . , n}, then we have⋃
i∈I

Ai =
n⋃

i=1

Ai =
{

Ai ∪ A2 ∪ · · · ∪ An, if n ≥ 1

∅, if n < 1,
(1.23)

and ⋂
i∈I

Ai =
n⋂

i=1

Ai =
{

Ai ∩ A2 ∩ · · · ∩ An, if n ≥ 1

S, if n < 1.
(1.24)

Theorem 1.1.5 (Properties of Set Operations). Let A1, A2, . . . , An, and B be subsets of S.

Then

Commutative and Associative Properties

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An = Ai1
∪ Ai2

∪ · · · ∪ Ain
, (1.25)
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and

n⋂
i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An = Ai1
∩ Ai2

∩ · · · ∩ Ain
, (1.26)

where i1 ∈ {1, 2, . . . , n} = I1, i2 ∈ I2 = I1 ∩ {i1}c , and

i� ∈ I� = I�−1 ∩ {i�−1}c , � = 2, 3, . . . , n.

In other words, the union (or intersection) of n sets is independent of the order in which the unions (or

intersections) are taken.

Distributive Properties

B ∩
n⋃

i=1

Ai =
n⋃

i=1

(B ∩ Ai ) (1.27)

B ∪
n⋂

i=1

Ai =
n⋂

i=1

(B ∪ Ai ) (1.28)

De Morgan’s Laws (
n⋂

i=1

Ai

)c

=
n⋃

i=1

A c
i (1.29)

(
n⋃

i=1

Ai

)c

=
n⋂

i=1

A c
i (1.30)

Throughout much of probability, it is useful to decompose a set into a union of simpler,

non-overlapping sets. This is an application of the “divide and conquer” approach to problem

solving. Necessary terminology is established in the following definition.

Definition 1.1.3. The sets A1, A2, . . . , An are mutually exclusive (or disjoint) if

Ai ∩ A j = ∅

for all i and j with i 	= j . The sets A1, A2, . . . , An form a partition of the set B if they are mutually

exclusive and

B = A1 ∪ A2 ∪ · · · ∪ An =
∪⋃

i=1

Ai
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The sets A1, A2, . . . , An are collectively exhaustive if

S = A1 ∪ A2 ∪ · · · ∪ An =
n⋃

i=1

Ai .

Example 1.1.4. Let S={(x, y) : x ≥ 0, y ≥ 0}, A={(x, y) : x + y < 1}, B = {(x, y) : x < y},
and C = {(x, y) : xy > 1/4}. Are the sets A, B, and C mutually exclusive, collectively exhaustive,

and/or a partition of S?

Solution. Since A ∩ C = ∅, the sets A and C are mutually exclusive; however, A ∩ B 	= ∅
and B ∩ C 	= ∅, so A and B, and B and C are not mutually exclusive. Since A ∪ B ∪ C 	= S,

the events are not collectively exhaustive. The events A, B, and C are not a partition of S since

they are not mutually exclusive and collectively exhaustive. �

Definition 1.1.4. The Cartesian product of sets A and B is a set of ordered pairs of elements of A

and the elements of B :

A × B = {ζ = (ζ1, ζ2) : ζ1 ∈ A, ζ2 ∈ B}. (1.31)

The Cartesian product of sets A1, A2, . . . , An is a set of n-tuples (an ordered list of n elements) of

elements of A1, A2, . . . , An :

A1 × A2 × · · · × An = {ζ = (ζ1, ζ2, . . . ζn) : ζ1 ∈ A1, ζ2 ∈ A2, . . . , ζn ∈ An}. (1.32)

An important example of a Cartesian product is the usual n-dimensional real Euclidean space:

R
n = R × R × · · · × R︸ ︷︷ ︸

n terms

. (1.33)

1.1.2 Notation

We briefly present a collection of some frequently used (and confused) notation.

Some special sets of real numbers will often be encountered:

(a, b) = {x : a < x < b},

(a, b] = {x : a < x ≤ b},

[a, b) = {x : a ≤ x < b},

and

[a, b] = {x : a ≤ x ≤ b}.
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Note that if a > b, then (a, b) = (a, b] = [a, b) = [a, b] = ∅. If a = b, then (a, b) =
(a, b] = [a, b) = ∅ and [a, b] = a . The notation (a, b) is also used to denote an ordered

pair—we depend on the context to determine whether (a, b) represents an open interval of real

numbers or an ordered pair.

We will often encounter unions and intersections of a collection of indexed sets. The

shorthand notations

n⋃
i=m

Ai =
{

Am ∪ Am+1 ∪ · · · ∪ An, if n ≥ m

∅, if n < m,
(1.34)

and

n⋂
i=m

Ai =
{

Am ∩ Am+1 ∩ · · · ∩ An, if n ≥ m

S, if n < m
(1.35)

are useful for reducing the length of expressions. These conventions are similar to the notation

used to express sums and products of real numbers:

n∑
i=m

xi =
{

xm + xm+1 + · · · + xn, if n ≥ m

0, if n < m,
(1.36)

and

n∏
i=m

xi =
{

xm × xm+1 + · · · + xn, if n ≥ m

1, if n < m.
(1.37)

As with integration, a change of variable is often helpful in solving problems and proving

theorems. Consider, for example, using the change of summation index j = n − i to obtain

n∑
i=1

xi =
n−1∑
j=0

xn− j .

A corresponding change of integration variable λ = t − τ yields

t∫
0

f (τ )dτ = −
0∫

t

f (t − λ)dλ =
t∫

0

f (t − λ)dλ .

Note that

3∑
i=1

i = 6 	= −
1∑

i=3

i = 0,
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u(t)

t0

1

FIGURE 1.3: Unit-step function

whereas

3∫
1

xdx = 4 = −
1∫

3

xdx .

In addition to the usual trigonometric functions sin(·), cos(·), and exponential function exp(x) =
e x , we will make use of the unit step function u(t) defined as

u(t) =
{

1, if t ≥ 0

0, if t < 0.
(1.38)

In particular, we define u(0) = 1, which proves to be convenient for our discussions of distri-

bution functions in Chapter 2. The unit step function is illustrated in Fig. 1.3.

Drill Problem 1.1.1. Define the sets S = {1, 2, . . . , 9}, A = {1, 2, 3, 4}, B = {4, 5, 8}, and

C = {3, 4, 7, 8}. Determine the sets: (a) (A ∩ B)c , (b) (A ∪ B ∪ C)c , (c ) (A ∩ B) ∪ (A ∩ Bc ) ∪
(Ac ∩ B), (d ) A ∪ (Ac ∩ B) ∪ ((A ∪ (Ac ∩ B))c ∩ C).

Answers: {1, 2, 3, 4, 5, 7, 8}; {6, 9}; {1, 2, 3, 5, 6, 7, 8, 9}; {1, 2, 3, 4, 5, 8}.
Drill Problem 1.1.2. Using the properties of set operations (not Venn diagrams), determine the va-

lidity of the following relationships for arbitrary sets A, B, C, and D : (a) B ∪ (Bc ∩ A) =
A ∪ B, (b) (A ∩ B) ∪ (A ∩ Bc ) ∪ (Ac ∩ B) = A, (c ) C ∩ (A ∪ ((Ac ∪ Bc )c ∩ D)) =
A ∩ C, (d ) A ∪ (Ac ∪ Bc )c = A.

Answers: True, True, True, False.

1.2 THE SAMPLE SPACE
An experiment is a model of a random phenomenon, an abstraction which ignores many of

the dynamic relationships of the actual random phenomenon. We seek to capture only the

prominent features of the real world problem with our experiment so that needless details do

not obscure our analysis. Consider our model of resistance, v(t) = Ri(t). One can utilize more

accurate models of resistance that will improve the accuracy of our real world analysis, but the
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cost is far too great to sacrifice the simplicity of v(t) = Ri(t) for our work with circuit analysis

problems.

Now, we will associate the universal set S with the set of outcomes of an experiment

describing a random phenomenon. Specifically, the sample space, or outcome space, is the

finest grain, mutually exclusive, and collectively exhaustive listing of all possible outcomes for the

experiment. Tossing a fair die is an example of an experiment. In performing this experiment,

the outcome is the number on the upturned face of the die, and thus the sample space is

S = {1, 2, 3, 4, 5, 6}. Notice that we could have included the distance of the toss, the number

of rolls, and other details in addition to the number on the upturned face of the die for the

experiment, but unless our analysis specifically called for these details, it would be unreasonable

to include them.

A sample space is classified as being discrete if it contains a countable number of objects.

A set is countable if the elements can be placed in one-to-one correspondence with the positive

integers. The set of integers S = {1, 2, 3, 4, 5, 6} from the die toss experiment is an example

of a discrete sample space, as is the set of all integers. In contrast, the set of all real numbers

between 0 and 1 is an example of an uncountable sample space. For now, we shall be content to

deal with discrete outcome spaces. We will later find that probability theory is concerned with

another discrete space, called the event space, which is a countable collection of subsets of the

outcome space—whether or not the outcome space itself is discrete.

1.2.1 Tree Diagrams

Many experiments consist of a sequence of simpler “subexperiments” as, for example, the sequen-

tial tossing of a coin and the sequential drawing of cards from a deck. A tree diagram is a useful

graphical representation of a sequence of experiments—particularly when each subexperiment

has a small number of possible outcomes.

Example 1.2.1. A coin is tossed twice. Illustrate the sample space with a tree diagram.

Solution. Let Hi denote the outcome of a head on the ith toss and Ti denote the outcome

of a tail on the ith toss of the coin. The tree diagram illustrating the sample space for this

sequence of two coin tosses is shown in Fig. 1.4. We draw the tree diagram as a combined

experiment, in a left to right path from the origin, consisting of the first coin toss (with each of

its outcomes) immediately followed by the second coin toss (with each of its outcomes). Note

that the combined experiment is really a sequence of two experiments. Each node represents

an outcome of one coin toss and the branches of the tree connect the nodes. The number of

branches to the right of each node corresponds to the number of outcomes for the next coin

toss (or experiment). A sequence of samples connected by branches in a left to right path from

the origin to a terminal node represents a sample point for the combined experiment. There
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T1

H1

T2

H2

H2

T2

H1 H2

H1 T2

T1 H2

T1 T2

OutcomeToss 2Toss 1

FIGURE 1.4: Tree diagram for Example 1.2.1

is a one-to-one correspondence between the paths in the tree diagram and the sample points

in the sample space for the combined experiment. For this example, the outcome space for the

combined experiment is

S = {H1 H2, H1T2, T1 H2, T1T2},
consisting of four sample points. �

Example 1.2.2. Two balls are selected, one after the other, from an urn that contains nine red, five

blue, and two white balls. The first ball is not replaced in the urn before the next ball is chosen. Set up

a tree diagram to describe the color composition of the sample space.

Solution. Let Ri , Bi , and Wi , respectively, denote a red, blue, and white ball drawn on the

ith draw. Note that R1 denotes the collection of nine outcomes for the first draw resulting in

a red ball. We will refer to such a collection of outcomes as an event. The tree diagram shown

in Fig. 1.5 is considerably simplified by using only one branch to represent R1, instead of nine.

Note that if there were only one white ball (instead of two), the branch terminating with the

sequence event W1W2 would be removed from the tree. �

Although the tree diagram seems to imply that each outcome is physically followed by

the next one, and so on, this need not be the case. A tree diagram can often be used even if the

subexperiments are performed at the same time. A sequential drawing of the sample space is

only a convenient representation, not necessarily a physical representation.

Example 1.2.3.1 Consider a population with genotypes for the blood disease sickle cell anemia, with the

two genotypes denoted by a and b. Assume that b is the code for the anemic trait and that a is without

the trait. Individuals can have the genotypes aa, ab and bb. Note that ab and ba are indistinguishable,

and that the disease is present only with bb. Construct a tree diagram if both parents are ab.

1This example is based on [14], pages 45–47.
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B1

R1

W1

R2

B2

W2

R2

B2

W2

R2

B2

W2

R1 R2

R1 B2

R1 W2

B1 R2

B1 B2

B1 W2

W1 R2

W1 B2

W1 W2 2   1 = 2
2   5 = 10
2   9 = 18

5   2 = 10
5   4 = 20
5   9 = 45

9   2 = 18
9   5 = 45
9   8 = 72

Event Number of outcomes2nd Draw1st Draw

FIGURE 1.5: Tree diagram for Example 1.2.2

Solution. Background for this problem is given in footnote.2 The tree diagram shown in

Fig. 1.6 is formed by first listing the alleles of the first parent and then the alleles of the second

parent. Notice only one child out of four will have sickle cell anemia.

2Genetics is the study of the variation within a species, originally based on the work by Mendel in the 19th century.

Reproduction is based on transferring genetic information from one generation to the next. Mendel originally

called genetic information traits in his work with peas (i.e., stem length characteristic as tall and dwarf, seed shape

characteristic as round or wrinkled, etc.). Today we refer to traits as genes, with variations in genes called alleles

or genotypes. Each parent stores two genes for each characteristic, and passes only one gene to the progeny. Each

gene is equally likely of being passed by the parent to the progeny. Through breeding, Mendel was able to create

pure strains of the pea plant, strains that produced only one type of progeny that was identical to the parents (i.e.,

the two genes were identical). By studying one characteristic at a time, Mendel was able to examine the impact of

pure parent traits on the progeny. In the progeny, Mendal discovered that one trait was dominant and the other

recessive or hidden. The dominant trait was observed when either parent passed a dominant trait. The recessive

trait was observed when both parents passed the recessive trait. Mendel showed that when both parents displayed

the dominant trait, offspring could be produced with the recessive trait if both parents contained a dominant and

recessive trait, and both passed the recessive trait.

Genetic information is stored in DNA. DNA is a double helix, twisted ladder-like molecule, where pairs of

nucleotides appear at each rung joined by a hydrogen bond. The nucleotides are called adenine (A), guanine (G),

cytosine (C) and thymine (T). Each nucleotide has a complementary nucleotide that forms a rung; A is always

paired with T and G with C, and is directional. Thus if one knows one chain, the other is known. For instance, if

one is given AGGTCT, the complement is TCCAGA.

DNA is also described by nucleosomes that are organized into pairs of chromosomes. Chromosomes store

all information about the organism’s chemical needs and information about inheritable traits. Humans contain

23 matched pairs of chromosomes. Each chromosome contains thousands of genes that encode instructions for

the manufacture of proteins (actually, this process is carried out by messenger RNA)—they are the blueprint for

the individual. Each gene has a particular location in a specific chromosome. Slight gene variations exist within a

population.

DNA replication occurs during cell division where the double helix is unzipped by an enzyme that breaks

the hydrogen bonds that form the ladder rungs, leaving two strands. New double strands are then formed by an

elaborate error checking process that binds the appropriate complementary nucleotides. While this process involves
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b

a

b

a

a

b

aa

ab

ba

bb

OutcomeParent 2Parent 1

FIGURE 1.6: Tree diagram for Example 1.2.3

1.2.2 Coordinate System

Another approach to illustrating the outcome space is to use a coordinate system representation.

This approach is especially useful when the combined experiment involves a combination of

two experiments with numerical outcomes. With this method, each axis lists the outcomes for

each subexperiment.

Example 1.2.4. A die is tossed twice. Illustrate the sample space using a coordinate system.

Solution. The coordinate system representation is shown in Fig. 1.7. Note that there are 36

sample points in the experiment; six possible outcomes on the first toss of the die times six

possible outcomes on the second toss of the die, each of which is indicated by a point in the

coordinate space. Additionally, we distinguish between sample points with regard to order; e.g.,

(1,2) is different from (2,1). �

Example 1.2.5. A real number x is chosen “at random” from the interval [0, 10]. A second real

number y is chosen “at random” from the interval [0, x]. Illustrate the sample space using a coordinate

system.

Solution. The coordinate system representation is shown in Fig. 1.8. Note that there are an

uncountable number of sample points in this experiment. �

1.2.3 Mathematics of Counting

Although either a tree diagram or a coordinate system enables us to determine the number

of outcomes in the sample space, problems immediately arise when the number of outcomes

is large. To easily and efficiently solve problems in many probability theory applications, it is

minimal errors (approx. one per billion), errors do happen. The most common error is nucleotide substitution where

one is changed for another. For instance, AGGTCT becomes AGCTCT (i.e., the third site goes from G to C).

Additional information on this topic is found in [3, 10, 14].
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1 2 3 4 5 6

1

2

3

4

6

5

0 1st Die Toss

2nd Die Toss

FIGURE 1.7: Coordinate system outcome space for Example 1.2.4

important to know the number of outcomes as well as the number of subsets of outcomes with

a specified composition. We now develop some formulas which enable us to count the number

of outcomes without the aid of a tree diagram or a coordinate system. These formulas are a part

of a branch of mathematics known as combinatorial analysis.

Sequence of Experiments

Suppose a combined experiment is performed in which the first experiment has n1 possible

outcomes, followed by a second experiment which has n2 possible outcomes, followed by a

third experiment which has n3 possible outcomes, etc. A sequence of k such experiments thus

has

n = n1n2 · · · nk (1.39)

10

10

0 x

y

FIGURE 1.8: Coordinate system outcome space for Example 1.2.5
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7

9
2
7
8

29
79
89

2
8
9

27
87
97

Tens OutcomeUnits

FIGURE 1.9: Tree diagram for Example 1.2.6

possible outcomes. This result allows us to quickly calculate the number of sample points in a

sequence of experiments without drawing a tree diagram, although visualizing the tree diagram

will lead instantly to the above equation.

Example 1.2.6. How many odd two digit numbers can be formed from the digits 2, 7, 8, and 9, if

each digit can be used only once?

Solution. A tree diagram for this sequential drawing of digits is shown in Fig. 1.9. From the

origin, there are two ways of selecting a number for the unit’s place (the first experiment). From

each of the nodes in the first experiment, there are three ways of selecting a number for the

ten’s place (the second experiment). The number of outcomes in the combined experiment is

the product of the number of branches for each experiment, or 2 × 3 = 6. �

Example 1.2.7. An analog-to-digital (A/D) converter outputs an 8-bit word to represent an input

analog voltage in the range −5 to +5 V. Determine the total number of words possible and the

maximum sampling (quantization) error.

Solution. Since each bit (or binary digit) in a computer word is either a one or a zero, and

there are 8 bits, then the total number of computer words is

n = 28 = 256.

To determine the maximum sampling error, first compute the range of voltage assigned to each

computer word which equals

10 V/256 words = 0.0390625 V/word

and then divide by two (i.e., round off to the nearest level), which yields a maximum error of

0.0195312 V/word. �
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Sampling With Replacement

Definition 1.2.1. Let Sn = {ζ1, ζ2, . . . , ζn}; i.e ., Sn is a set of n arbitrary objects. A sample of size

k with replacement from Sn is an ordered list of k elements:

(ζi1
, ζi2

, . . . , ζik
),

where i j ∈ {1, 2, . . . , n}, for j = 1, 2, . . . , k.

Theorem 1.2.1. There are nk samples of size k when sampling with replacement from a set of n

objects.

Proof. Let Sn be the set of n objects. Each component of the sample can have any of the n

values contained in Sn, and there are k components, so that there are nk distinct samples of size

k (with replacement) from Sn. �

Example 1.2.8. An urn contains ten different balls B1, B2, . . . , B10. If k draws are made from the

urn, each time replacing the ball, how many samples are there?

Solution. There are 10k such samples of size k. �

Example 1.2.9. How many k-digit base bnumbers are there?

Solution. There are bk different base b numbers. �

Permutations

Definition 1.2.2. Let Sn = {ζ1, ζ2, . . . , ζn}; i.e ., Sn is a set of n arbitrary objects. A sample of size

k without replacement or permutation from Sn is an ordered list of kelements of Sn :

(ζi1
, ζi2

, . . . , ζik
),

where i j ∈ In, j , In,1 = {1, 2, . . . , n}, and In, j = In, j−1 ∩ {i j−1}c , for j = 2, 3, . . . , k.

Theorem 1.2.2. There are

Pn,k = n(n − 1) · · · (n − k + 1)

distinct samples of size k without replacement from a set of n objects. The quantity Pn,k is also called

the number of permutations of n things taken k at a time and can be expressed as

Pn,k = n!

(n − k)!
, (1.40)

where n! = n(n − 1)(n − 2) · · · 1, and 0! = 1.
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Proof. We note that the first component of the sample can have any of n values, the second can

have any of n − 1 values, the j th component can have any of n − ( j − 1) values. Consequently,

Pn,k = n(n − 1) · · · (n − k + 1). �

Example1.2.10. From a rural community of 40 people, four people are selected to serve on a committee.

Those selected are to serve as president, vice president, treasurer, and secretary. Find the number of

sample points in S.

Solution. Since the order of selection is important, we compute the number of sample points

in S using the formula for permutations with n = 40 and k = 4 as

P40,4 = 40!

(40 − 4)!
= 40 × 39 × 38 × 37 = 2,193,360. �

It is important to emphasize that sampling either with or without replacement yields an ordered

list: samples consisting of the same elements occurring in a different order are counted as distinct

samples.

Next, consider a case in which some of the n objects are identical and indistinguishable.

Theorem 1.2.3. The number of distinct permutations of n objects taken n at a time in which n1 are

of one kind, n2 are of a second kind, . . . , nk are of a kth kind, is

Pn:n1,n2,...,nk
= n!

n1! n2! · · · nk !
, (1.41)

where

n =
k∑

i=1

ni . (1.42)

Proof. This result can be verified by noting that there are n! ways of ordering n things (n! samples

without replacement from n things). We must divide this by n1! (the number of ways of ordering

n1 things), then by n2!, etc. For example, if A = {a1, a2, a3, b}, then the number of permutations

taken 4 at a time is 4!. If the subscripts are disregarded, then a1a2ba3 is identical to a1a3ba2,

a2a3ba1, a3a1ba2, a2a1ba3 and a3a2ba1, and can not be included as unique permutations. In this

example then, the total number of permutations (4!) is divided by the number of permutations

of the three As and equals 4!/3!. Thus, whenever a number of identical objects form part of

a sample, the number of total permutations of all the objects is divided by the product of the

number of permutations due to each of the identical objects. �

Example 1.2.11. How many different 8-bit computer words can be formed from five zeros and three

ones?
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Solution. The total number of distinct permutations or arrangements is

P8:5,3 = 8!

5! 3!
= 56. �

Combinations

Definition 1.2.3. A combination is a set of elements without repetition and without regard to order.

Theorem 1.2.4. The number of combinations of n things taken k at a time is given by

Cn,k = Pn,k

k!
=

(
n

k

)
= n!

(n − k)! k!
. (1.43)

Proof. We have

Cn,k = number of permutations of n things taken k at a time

number of ways of reordering k things
. �

Note that Cn,k = Pn:n−k,k .

Example1.2.12. From a rural community of 40 people, four people are selected to serve on a committee.

Those selected are to serve as president, vice president, treasurer, and secretary. Find the number of

committees that can be formed.

Solution. There are C40,4 ways of choosing an unordered group of four people from the

community of forty. In addition, there are 4! ways of reordering (assigning offices) each group

of four; consequently, there are

4! × C40,4 = 4!
40!

(40 − 4)! 4!
= 40 × 39 × 38 × 37 = 2,193,360

committees. �
One useful application of the number of combinations is the proof of the Binomial

Theorem.

Theorem 1.2.5 (Binomial Theorem). Let x and y be real numbers and let n be a positive integer.

Then

(x + y)n =
n∑

k=0

(
n

k

)
xn−k yk . (1.44)

Proof. We have

(x + y)n = (x + y)(x + y) · · · (x + y)︸ ︷︷ ︸
n terms

,
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a product of n sums. When the product is expanded as a sum of products, out of each term

we choose either an x or a y ; letting k denote the number of y ’s, we then have n − k x ’s to

obtain a general term of the form xn−k yk . There are ( n
k ) such terms. The desired result follows

by summing over k = 0, 1, . . . , n. �

Example 1.2.13. From four resistors and three capacitors, find the number of three component series

circuits that can be formed consisting of two resistors and one capacitor. Assume each of the components

is unique, and the ordering of the elements in the circuit is unimportant.

Solution. This problem consists of a sequence of three experiments. The first and second

consist of drawing a resistor, and the third consists of drawing a capacitor.

One approach is to combine the first two experiments—the number of combinations of

two resistors from four is C4,2 = 6. For the third experiment, the number of combinations of

one capacitor from three is C3,1 = 3. We find the number of circuits that can be found with

two resistors and one capacitor to be C4,2C3,1 = 6 × 3 = 18.

For another approach, consider a typical “draw” of components to be R1 R2C. R1 can be

any of four values, R2 can be any of the remaining three values, and C can be any of three

values—for a total number of 4 × 3 × 3 = 36 possible draws of components. There are 2! ways

to reorder R1 and R2 and 1! way of reordering the capacitor C , so that we have

4 × 3 × 3

2! 1!
= 18

possible circuits. �
As the previous example showed, solving a counting problem involves more than sim-

ply applying a formula. First, the problem must be clearly understood. The first step in the

solution is establishing whether the problem involves a permutation or combination of the

sample space. In many cases, it is convenient to utilize a tree diagram to subdivide the sam-

ple space into mutually exclusive parts, and to attack each of these parts individually. Typi-

cally, this simplifies the analysis sufficiently so that the previously developed formulas can be

applied.

Combined Experiments

We now combine the concepts of permutations and combinations to provide a general framework

for finding the number of samples (ordered lists) as well as the number of sets of elements

(unordered) satisfying certain criteria.

Consider an experiment ε consisting of a sequence of the k subexperiments ε1, ε2, . . . , εk ,

with outcome of the ith subexperiment denoted as ζi ∈ Si , where Si denotes the outcome space
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for the ith subexperiment. We denote this combined experiment by the cartesian product:

ε = ε1 × ε2 × · · · × εk, (1.45)

with outcome

ζ = (ζ1, ζ2, . . . , ζk) ∈ S (1.46)

and outcome space S the cartesian product

S = S1 × S2 × · · · × Sk . (1.47)

In general,3 the set of outcomes Si for the ith subexperiment may depend on the out-

comes ζ1, ζ2, . . . , ζi−1 which occur in the preceding subexperiments, as in sampling without

replacement. The total number of possible outcomes in S is

nS = nS1
nS2

. . . nSk
, (1.48)

where nSi
is the number of elements in Si .

For sampling with replacement from a set of n elements, let S1 denote the set of n elements,

Si = S1, nSi
= n, for i = 1, 2, . . . , k. Consequently, there are

nS = nk (1.49)

samples of size k with replacement from a set of n objects.

For sampling without replacement from a set of n elements, let S1 denote the set of n

elements, Si = Si−1 ∩ {ζi−1}c , for i = 2, 3, . . . , k. Hence, there are

nS = n × (n − 1) · · · (n − k + 1) = Pn,k (1.50)

samples of size k without replacement from a set of n objects.

Now, consider the set A ⊂ S with

A = A1 × A2 × · · · × Ak, (1.51)

so that ζ ∈ A iff (if and only if )

ζi ∈ Ai ⊂ Si , i = 1, 2, . . . , k. (1.52)

We find easily that the total number of outcomes in A is

nA = nA1
nA2

. . . nAk
, (1.53)

where nAi
is the total number of elements in Ai , i = 1, 2, . . . , k. For reasons to be made clear

later, we shall refer to this set A as a sequence event, and often denote it simply as

A = A1 A2 . . . Ak . (1.54)

3Actually, Si could depend on any or all of ζ1, ζ2, . . . , ζk ; however, to simplify our treatment, we restrict attention to

sequence experiments which admit a step-by-step implementation.
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Note that nA is the total number of outcomes in the (ordered) sequence event A.

If k1 of the Ai s are of one kind, k2 of the Ai s are of a second kind, . . . , and kr of the Ai s

of the r th kind, with

k =
r∑

i=1

ki , (1.55)

then the total number of sequence events which are equivalent to A is Pk:k1,k2,...,kr
so that the

total number of (ordered) outcomes equivalent to the sequence event A is

ntot = nA × Pk:k1,k2,...,kr
= k!

nA1
nA2

. . . nAk

k1! k2! . . . kr !
. (1.56)

Finally, if the ordering of the Ai s is unimportant, we find the number of distinct combinations

which are equivalent to the sequence event A is

ncomb = ntot

k!
= nA1

nA2
. . . nAk

k1! k2! . . . kr !
, (1.57)

where k! is the number of ways of reordering a k-dimensional outcome.

Example 1.2.14. Five cards are dealt from a standard 52 card deck of playing cards. There are four

suits (Hearts, Spades, Diamonds, and Clubs), with 13 cards in each suit (2,3,4,5,6,7,8,9,10, Jack,

Queen, King, Ace). (a) How many five-card hands can be dealt? (b) How many five-card hands

contain exactly two Hearts? (c) How many hands contain exactly one Jack, two Queens, and two

Aces?

Solution

(a) There are P52,5 = 52 × 51 × 50 × 49 × 48 ≈ 3.12 × 108 five-card hands, counting

different orderings as distinct. Since the ordering of cards in the hand is not important,

there are

C52,5 = P52,5

5!
= 2598960 ≈ 2.6 × 106

five-card hands that can be drawn.

(b) Consider the sequence event

A = H1 H2 X3 X4 X5,

where Hi denotes a heart on the ith draw and Xi denotes a non-heart drawn on the

ith draw. There are

nA = 13 × 12 × 39 × 38 × 37 = 8554104
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outcomes in the sequence event A. Of the five cards, two are of type heart, and three

are of type non-heart, for a total of

ntot = nA P5:2,3 = nA × 10 = 85541040

outcomes equivalent to those in A. Finally, since the ordering of cards in a hand is

unimportant, we find that there are

nA

2! 3!
= 13 × 12 × 39 × 38 × 37

2! 3!
= 712842

hands with exactly two hearts.

An alternative is to compute

C13,2C39,3 = 13 × 12

2!

39 × 38 × 37

3!
= 712842.

(c) Consider the sequence event

B = J1 Q2 Q3 A4 A5.

Arguing as in (b), we find that there are

4 × 4 × 3 × 4 × 3

1! 2! 2!
= 144

hands with one Jack, two Queens, and two Aces.

An alternative is to compute

C4,1C4,2C4,2 = 4

1

4 × 3

2

4 × 3

2
= 144. �

Example 1.2.15. Suppose a committee of four members is to be formed from four boxers (A,B,C,D),

five referees (E,F,G,H,I) and TV announcer J. Furthermore, A and B hate each other and cannot be

on the same committee unless it contains a referee. How many committees can be formed?

Solution. This problem can best be solved by reducing the problem into a mutually exclusive

listing of smaller problems. There are four acceptable committee compositions:

1. A is on the committee and B is not. Consider the sequence event AX2 X3 X4, where

Xi consists of all previously unselected candidates except B. There are 1 × 8 × 7 × 6

outcomes in the sequence event AX2 X3 X4. Since X2, X3, and X4, are equivalent and

the order is unimportant, we find that there are

1 × 8 × 7 × 6

1! 3!
= 56

distinct committees with A on the committee and B not on the committee.
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2. B is on the committee and A is not. This committee composition is treated as case 1

above with A and B interchanged. There are thus 56 such committees.

3. Neither A nor B is on the committee. Consider the sequence event X1 X2 X3 X4, where

Xi denotes any previously unselected candidate except A or B. There are

8 × 7 × 6 × 5

0! 4!
= 70

such committees.

4. A and B are on the committee, along with at least one referee. Consider AB RX4, where

X4 = {C, D, J }. There are

1 × 1 × 5 × 3

1! 1! 1! 1!
= 15

such committees with one referee. By considering AB R3 R4, there are

1 × 1 × 5 × 4

1! 1! 2!
= 10

distinct committees with two referees.

Thus, the total number of acceptable committees is

56 + 56 + 70 + 15 + 10 = 207. �

Example 1.2.16. A change purse contains five nickels, eight dimes, and three quarters. Find the

number of ways of drawing two quarters, three dimes, and four nickels if:

(a) coins are distinct and order is important,

(b) coins are distinct and order is unimportant,

(c) coins are not distinct and order is important,

(d) coins are not distinct and order is unimportant.

Solution. Let sequence event

A = Q1 Q2 D3 D4 D5 N6 N7 N8 N9.

Sequence event A represents one way to obtain the required collection of coins. There are a

total of 3 × 2 × 8 × 7 × 6 × 5 × 4 × 3 × 2 = 241920 outcomes in A. There are

9!

2! 3! 4!
= 9 × 8 × 7 × 6 × 5

2 × 3 × 2
= 2 × 630 = 1260

ways to reorder the different types of coins in A, so that there are a total of 1260 sequence events

which, like A, contain two quarters, three dimes, and four nickels.
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(a) We find that there are

241920 × 9!

2! 3! 4!
≈ 3.048 × 108

ways to draw two quarters, three dimes, and four nickels if the coins are distinct and

order is important.

(b) There are 9! ways to reorder nine distinct items, so that there are

241920

9!
× 9!

2! 3! 4!
= 241920

2! 3! 4!
= 840

ways to draw two quarters, three dimes, and four nickels if the coins are distinct and

order is unimportant.

(c) Sequence event A represents one way to obtain the required collection of coins. There

are

9!

2! 3! 4!
= 1260

ways to reorder the different types of coins in A, so that there are 1260 ways to draw

two quarters, three dimes, and four nickels if the coins are not distinct and order is

important.

(d) There is 1 way to draw two quarters, three dimes, and four nickels if the coins are not

distinct and order is unimportant. �

Drill Problem 1.2.1. An urn contains four balls labeled 0, 1, 2, 3. Two balls are selected one after

the other without replacement. Enumerate the sample space using both a tree diagram and a coordinate

system.

Answers: 12, 12.

Drill Problem 1.2.2. An urn contains three balls labeled 0, 1, 2. Reach in and draw one ball to

determine how many times a coin is to be flipped. Enumerate the sample space with a tree diagram.

Answer: 7.

Drill Problem 1.2.3. Professor S. Rensselaer teaches a course in probability theory. She is a kind-

hearted but very tricky old lady who likes to give many unannounced quizzes during the week. She

determines the number of quizzes each week by tossing a fair tetrahedral die with faces labeled 1, 2, 3,

4. The more quizzes she gives, however, the less time she has to assign and grade homework problems.

If Ms. Rensselaer is to give L quizzes during the week, then she will assign from 1 to 5-L homework

problems. Enumerate the sample space describing the number of quizzes and homework problems she

gives each week.

Answer: 10.
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Drill Problem 1.2.4. Determine the number of 8-bit computer words that can be formed if: (a) the

first character is zero, (b) the last two characters are one, (c) the first character is zero and the last two

characters are one, (d) all of the characters are zero.

Answers: 1, 32, 64, 128.

Drill Problem 1.2.5. Determine the number of even three digit numbers that can be formed

from S if each digit can be used only once and (a) S = {1, 2, 4, 7}; (b) S = {2, 4, 6, 8}; (c ) S =
{1, 2, 3, 5, 7, 8, 9}; (d )S = {1, 3, 5, 7, 9}.
Answers: 24, 12, 60, 0.

Drill Problem 1.2.6. Eight students A through H enter a student paper contest in which awards

are given for first, second and third place. Determine the number of finishes (a) possible; (b) if student

C is awarded first place; (c) if students C and D are given an award; (d) if students C or D are given

an award, but not both.

Answers: 336, 42, 36, 180.

Drill Problem 1.2.7. Determine the number of 8-bit computer words containing (a) three zeros;

(b) three zeros, given the first bit is one; (c) two zeros, given the first three bits are one; (d) more zeros

than ones.

Answers: 35, 56, 93, 10.

Drill Problem 1.2.8. Suppose a committee consisting of three members is to be formed from five

men and three women. How many committees (a) can be formed; (b) can be formed with two women

and one man; (c) can be formed with one woman and two men if a certain man must be on the

committee?

Answers: 15, 56, 12.

Drill Problem 1.2.9. A college plays eight conference and two nonconference football games during

a season. Determine the number of ways the team may end the season with (a) eight wins and two

losses; (b) three wins, six losses, and one tie; (c) at least seven wins and no ties; (d) three wins in their

first four games and two wins and three losses in the remaining games.

Answers: 840, 176, 480, 45.

1.3 DEFINITION OF PROBABILITY
Up to this point, we have discussed an experiment and the outcome space for the experiment.

We have devoted some effort to evaluating the number of specific types of outcomes in the case

of a discrete outcome space. To a large extent, probability theory provides analytical methods
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for assigning and/or computing the “likelihood” that various “phenomena” associated with the

experiment occur. Since the experimental outcome space is the set of all possible outcomes

of the experiment, it is clear that any phenomenon for which we have an interest may be

considered to be some subset of the outcome space. We will henceforth refer to such a subset

of S as an event. We say that event A has occurred if the experimental outcome ζ ∈ A. Thus,

if A ⊂ S is an event we denote the probability (or likelihood) that event A has occurred as

P (A). While any subset of S is a potential event—we will find that a large simplification

occurs when we investigate only those events in which we have some interest. Let’s agree at

the outset that P (A) is a real number between 0 and 1, with P (A) = 0 meaning that the event

A is extremely unlikely to occur and P (A) = 1 meaning that the event A is almost certain to

occur.

Several approaches to probability theory have been taken. Four approaches will be dis-

cussed here: classical, relative frequency, personal probability and axiomatic.

1.3.1 Classical

The classical approach to probability evolved from the gambling dens of Europe in the 1600s.

It is based on the idea that any experiment can be broken down into a fine enough space so

that each single outcome is equally likely. All events are then made up of the mutually exclusive

outcomes. Thus, if the total number of outcomes is N and the event A occurs for NA of these

outcomes, the classical approach defines the probability of A,

P (A) = NA

N
. (1.58)

This definition suffers from an obvious fault of being circular. The statement of being

“equally likely” is actually an assumption of certain probabilities. Despite this and other faults,

the classical definition works well for a certain class of problems that come from games of chance

or are similar in nature to games of chance. We will use the classical definition in assuming

certain probabilities in many of our examples and problems, but we will not develop a theory

of probability from it.

1.3.2 Relative Frequency

The relative frequency definition of probability is based on observation or experimental evidence

and not on prior knowledge. If an experiment is repeated N times and a certain event A occurs

in NA of the trials, then the probability of A is defined to be

P (A) = lim
N→∞

NA

N
. (1.59)

For example, if a six-sided die is rolled a large number of times and the numbers on

the face of the die come up in approximately equal proportions, then we could say that the
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probability of each number on the upturned face of the die is 1/6. The difficulty with this

definition is determining when N is sufficiently large and indeed if the limit actually exists. We

will certainly use this definition in relating deduced probabilities to the physical world, but we

will not develop probability theory from it.

1.3.3 Personal Probability

Personal or subjective probability is often used as a measure of belief whether or not an event

may have occurred or is going to occur. Its only use in probability theory is to subjectively

determine certain probabilities or to subjectively interpret resulting probability calculations. It

has no place in the development of probability theory.

1.3.4 Axiomatic

Last, we turn our attention to the axiomatic4 definition of probability in which we assign a

number, called a probability, to each event in the event space. For now, we consider the event

space (denoted by F ) to be simply the space containing all events to which we wish to assign a

probability. Logically, the probability that event A occurs should relate to some physical average

not conflicting with the other definitions of probability, and should reflect the chance of that

event occurring in the performance of the experiment. Given this assignment, the axiomatic

definition of probability is stated as follows. We assign a probability to each event in the event

space according to the following axioms:

A1: P (A) ≥ 0 for any event A ∈ F ;

A2: P (S) = 1;

A3: If A1, A2, . . . are mutually exclusive events in F , then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai ).

When combined with the properties of the event space F (treated in the following section),

these axioms are all that is necessary to derive all of the theorems of probability theory.

Consider the third axiom. Let A1 = S and Ai = ∅, for i > 1. Then A1, A2, . . . are

mutually exclusive and the third axiom yields

P (S) = P (S) +
∞∑

i=2

P (∅)

so that P (∅) = 0. Now, with A1 = A, A2 = B, Ai = ∅ for i > 2, and A ∩ B = ∅, the third

axiom yields P (A ∪ B) = P (A) + P (B).

4An axiom is a self-evident truth or proposition; an established or universally received principle.
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Some additional discussion concerning the selection of the three axioms is in order. Both

the classical definition and the relative frequency definition give some physical meaning to

probability. The axiomatic definition agrees with this. Consider the axioms one at a time.

Certainly, the first axiom does not conflict since probability is nonnegative for the first two

definitions. The second axiom also agrees since if event A always occurs, then NA = N and

P (A) = 1. But why the third axiom? Consider the classical definition with two events A and

B occurring in NA and NB outcomes, respectively. With A and B mutually exclusive, the total

number of events in which A or B occurs is NA + NB . Therefore,

P (A ∪ B) = NA + NB

N
= P (A) + P (B),

which agrees with the third axiom. If A and B are not mutually exclusive, then both A and B

could occur for some outcomes and the total number of outcomes in which A or B occurs is

less than NA + NB . A similar argument can be made with the relative frequency definition.

The axioms do not tell us how to compute the probabilities for each sample point in

the sample space—nor do the axioms tell us how to assign probabilities for each event in the

event space F . Rather, the axioms provide a consistent set of rules which must be obeyed when

making probability assignments. Either the classical or relative frequency approach is often used

for making probability assignments.

One method of obtaining a probability for each sample point in a finite sample space

is to assign a weight, w, to each sample point so that the sum of all weights is one. If the

chance of a particular sample point occurring during the performance of the experiment is quite

likely, the weight should be close to one. Similarly, if the chance of a sample point occurring

is unlikely, the weight should be close to zero. When this chance of occurrence is determined

by experimentation, we are using the relative frequency definition. If the experiment has a

sample space in which each outcome is equally likely, then each outcome is assigned an equal

weight according to the classical definition. After we have assigned a probability to each of the

outcomes, we can find the probability of any event by summing the probabilities of all outcomes

included in the event. This is a result of axiom three, since the outcomes are mutually exclusive,

single element events.

Example 1.3.1. A die is tossed once. What is the probability of an even number occurring?

Solution. The sample space for this experiment is

S = {1, 2, 3, 4, 5, 6}.

Since the die is assumed fair, each of these outcomes is equally likely to occur. Therefore,

we assign a weight of w to each sample point; i.e., P (i) = w, i = 1, 2, . . . , 6. By the second and
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third axioms of probability we have P (S) = 1 = 6w; hence, w = 1/6. Letting A = {2, 4, 6},
we find the probability of event A equals

P (A) = P ({2}) + P ({4}) + P ({6}) = 1

2
. �

Example 1.3.2. A tetrahedral die (with faces labeled 0,1,2,3) is loaded so that the zero is three times

as likely to occur as any other number. If A denotes the event that an odd number occurs, then find

P (A) for one toss of the die.

Solution. The sample space for this experiment is S = {0, 1, 2, 3}. Assigning a weight w to

the sample points 1, 2, and 3; and 3w to zero, we find

P (S) = 1 = P ({0}) + P ({1}) + P ({2}) + P ({3}) = 3w + w + w + w = 6w,

and w = 1/6. Thus P (A) = P ({1}) + P ({3}) = 1/3. �

Example 1.3.3. Find the probability of exactly four zeros occurring in an 8-bit word.

Solution. From the previous section, we know that there are 28 = 256 outcomes in the sample

space. Let event A = {00001111}. Since each outcome is assumed equally likely, we have

P (A) = 1/256. We need to multiply P (A) by the number of events which (like A) have exactly

four zeros and four ones; i.e., by

P8:4,4 = 8!

4!4!
= 70.

So, the desired probability is 70/256. �

Example 1.3.4. A fair coin is tossed twice. If A is the event that at least one head appears, and B is

the event that two heads appear, find P(A ∪ B).

Solution. Letting Hi and Ti denote a Head and Tail, respectively, on the ith toss, we find that

A = {H1 H2, H1T2, T1 H2},
B = {H1 H2} ⊂ A;

hence, P (A ∪ B) = P (A) = 3/4. It is important to note that in this case P (A) + P (B) = 1 	=
P (A ∪ B) since the events A and B are not mutually exclusive. �

Example 1.3.5. Three cards are drawn at random (each possibility is equally likely) from an ordinary

deck of 52 cards (without replacement). Find the probability p that two are spades and one is a heart.

Solution. There are a total of 52 × 51 × 50 possible outcomes of this experiment. Consider

the sequence event A = S1S2 H3, denoting a spade drawn on each of the first two draws, and a



P1: IML

MOBK035-01 MOBK035-Enderle.cls October 5, 2006 18:25

34 BASIC PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

heart on the third draw. There are 13 × 12 × 13 outcomes in the sequence event A. There are

3!

2! 1!
= 3

mutually exclusive events which, like A, contain two spades and one heart. We conclude that

p = 13 × 12 × 13 × 3

52 × 51 × 50
= 39

850
.

An alternative is to compute

p = C13,2C13,1

C52,3

= 39

850
. �

The preceding examples illustrate a very powerful technique for computing probabilities:

express the desired event as a union of mutually exclusive events with known probabilities and

apply the third axiom of probability. As long as all such events are in the event space F , this

technique works well. When the outcome space is discrete, the event space can be taken to be

the collection of all subsets of S; however, when the outcome space S contains an uncountably

infinite number of elements the technique fails. For now, we assume all needed events are

in the event space and address the necessary structure of the event space in the next section.

The following theorem, which is a direct consequence of the axioms of probability, provides

additional analytical ammunition for attacking probability problems.

Theorem 1.3.1. Assuming that all events indicated are in the event space F , we have:

(i) P (Ac ) = 1 − P (A),

(ii) P (∅) = 0,

(iii) 0 ≤ P (A) ≤ 1,

(iv) P (A ∪ B) = P (A) + P (B) − P (A ∩ B), and

(v) P (B) ≤ P (A) if B ⊂ A.

Proof

(i) Since S = A ∪ Ac and A ∩ Ac = ∅, we apply the second and third axioms of probability

to obtain

P (S) = 1 = P (A) + P (Ac ),

from which (i) follows.

(ii) Applying (i) with A = S we have Ac = ∅ so that P (∅) = 1 − P (S) = 0.

(iii) From (i) we have P (A) = 1 − P (Ac ), from the first axiom we have P (A) ≥ 0 and

P (Ac ) ≥ 0; consequently, 0 ≤ P (A) ≤ 1.
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(iv) Let C = B ∩ Ac . Then

A ∪ C = A ∪ (B ∩ Ac ) = (A ∪ B) ∩ (A ∪ Ac ) = A ∪ B,

and A ∩ C = A ∩ B ∩ Ac = ∅, so that P (A ∪ B) = P (A) + P (C). Furthermore, B =
(B ∩ A) ∪ (B ∩ Ac ) and (B ∩ A) ∩ (B ∩ Ac ) = ∅ so that P (B) = P (C) + P (A ∩ B)

and P (C) = P (B) − P (A ∩ B).

(v) Since B ⊂ A, we have A = (A ∩ B) ∪ (A ∩ Bc ) = B ∪ (A ∩ Bc ). Consequently,

P (A) = P (B) + P (A ∩ Bc ) ≥ P (B). �

The above theorem and its proof are extremely important. The reader is urged to digest

it totally—Venn diagrams are permitted to aid in understanding.

Example 1.3.6. Given P (A) = 0.4, P (A ∩ Bc ) = 0.2, and P (A ∪ B) = 0.6, find P (A ∩ B)

and P (B).

Solution. We have P (A) = P (A ∩ B) + P (A ∩ Bc ) so that P (A ∩ B) = 0.4 − 0.2 = 0.2.

Similarly,

P (Bc ) = P (Bc ∩ A) + P (Bc ∩ Ac ) = 0.2 + 1 − P (A ∪ B) = 0.6.

Hence, P (B) = 1 − P (Bc ) = 0.4. �

Example 1.3.7. A man is dealt four spade cards from an ordinary deck of 52 playing cards, and then

dealt three additional cards. Find the probability p that at least one of the additional cards is also a

spade.

Solution. We may start the solution with a 48 card deck of 9 spades and 39 non-spade cards.

One approach is to consider all sequence events with at least one spade: S1 N2 N3, S1S2 N3,

and S1S2S3, along with the reorderings of these events.

Instead, consider the sequence event with no spades: N1 N2 N3, which contains 39 × 38 ×
37 outcomes. We thus find

1 − p = 39 × 38 × 37

48 × 47 × 46
= 9139

17296
,

or p = 8157/17296. �

Boole’s Inequality below provides an extension of Theorem 1.3.1(iv) to the case with

many non-mutually exclusive events.
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Theorem 1.3.2 (Boole’s Inequality). Let A1, A2, . . . all belong to F . Then

P

( ∞⋃
i=1

Ai

)
=

∞∑
k=1

(P (Ak) − P (Ak ∩ Bk)) ≤
∞∑

k=1

P (Ak),

where

Bk =
k−1⋃
i=1

Ai .

Proof. Note that B1 = ∅, B2 = A1, B3 = A1 ∪ A2, . . . , Bk = A1 ∪ A2 ∪ · · · ∪ Ak−1; as k in-

creases, the size of Bk is nondecreasing. Let Ck = Ak ∩ Bc
k ; thus,

Ck = Ak ∩ (
Ac

1 ∩ Ac
2 ∩ · · · ∩ Ac

k−1

)
consists of all elements in Ak and not in any Ai , i = 1, 2, . . . , k − 1. Then

Bk+1 =
k⋃

i=1

Ai = Bk ∪ (Ak ∩ Bc
k )︸ ︷︷ ︸

Ck

,

and

P (Bk+1) = P (Bk) + P (Ck).

We have P (B2) = P (C1), P (B3) = P (C1) + P (C2), and

P (Bk+1) = P

(
k⋃

i=1

Ai

)
=

k∑
i=1

P (Ci ).

The desired result follows by noting that

P (Ci ) = P (Ai ) − P (Ai ∩ Bi ). �

While the above theorem is useful in its own right, the proof illustrates several important

techniques. The third axiom of probability requires a sequence of mutually exclusive events.

The above proof shows one method for obtaining a collection of n mutually exclusive events

from a collection of n arbitrary events. It often happens that one is willing to settle for an upper

bound on a needed probability. The above proof may help convince the reader that such a bound

might be much easier to obtain than carrying out a complete, exact analysis. It is up to the user,

of course, to determine when a bound is acceptable. Obviously, when an upper bound on a

probability exceeds one the upper bound reveals absolutely no relevant information!
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Example 1.3.8. Let S = [0, 1] (the set of real numbers {x : 0 ≤ x ≤ 1}). Let A1 = [0, 0.5], A2 =
(0.45, 0.7), A3 = [0.6, 0.8), and assume P (ζ ∈ I ) = length of the interval I ∩ S, so that P (A1) =
0.5, P (A2) = 0.25, and P (A3) = 0.2. Find P (A1 ∪ A2 ∪ A3).

Solution. Let C1 = A1, C2 = A2 ∩ Ac
1 = (0.5, 0.7), and C3 = A3 ∩ Ac

1 ∩ Ac
2 = [0.7, 0.8).

Then C1, C2, and C3 are mutually exclusive and A1 ∪ A2 ∪ A3 = C1 ∪ C2 ∪ C3; hence

P (A1 ∪ A2 ∪ A3) = P (C1 ∪ C2 ∪ C3) = 0.5 + 0.2 + 0.1 = 0.8.

Note that for this example, Boole’s inequality yields

P (A1 ∪ A2 ∪ A3) ≤ 0.5 + 0.25 + 0.2 = 0.95.

This is an example of an uncountable outcome space. It turns out that for this example, it is

impossible to compute the probabilities for every possible subset of S. This dilemma is addressed

in the following section. �

Drill Problem 1.3.1. Let P (A) = 0.35, P (B) = 0.5, P (A ∩ B) = 0.2, and let C be an arbi-

trary event. Determine: (a) P (A ∪ B); (b)P (B ∩ Ac ); (c )P ((A ∩ B) ∪ (A ∩ Bc ) ∪ (Ac ∩ B)); (d)

P ((A ∩ Bc ) ∪ (Ac ∩ B) ∪ (Ac ∩ B ∩ Cc )).

Answers: 0.45, 0.3, 0.65, 0.65.

Drill Problem 1.3.2. A pentahedral die (with faces labeled 1,2,3,4,5) is loaded so that an even

number is twice as likely to occur as an odd number (e.g., P ({2}) = 2P ({1})). Let A equal the event

that a number less than three occurs and B equal the event that the number is even. Determine: (a)

P (A); (b)P (B); (c )P (Ac ∪ Bc ); (d )P (A ∪ (B ∩ Ac )).

Answers: 3/7, 4/7, 5/7, 5/7.

Drill Problem 1.3.3. A woman is dealt two hearts and a spade from a deck of cards. She is given four

more cards. Determine the probability that: (a) one is a spade; (b) two are hearts; (c) two are spades

and one is a club; (d) at least one is a club.

Answers: 0.18249, 0.09719, 0.72198, 0.44007.

Drill Problem 1.3.4. Determine the probability that an 8-bit computer word contains: (a) four

zeros; (b) four zeros, given the last bit is a 1; (c) two zeros, given the first three bits are one; (d) more

zeros than ones.

Answers: 70/256, 70/256, 80/256, 93/256.
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1.4 THE EVENT SPACE
Although the techniques presented in the previous section are always possible when the ex-

perimental outcome space is discrete, they fall short when the outcome space is not discrete.

For example, consider an experiment with outcome any real number between 0 and 5, with all

numbers equally likely. We then have that the probability of any specific number between 0 and

5 occurring is exactly 0. Attempting to let the event space be the collection of all subsets of the

outcome space S = {x : 0 ≤ x ≤ 5} then leads to serious difficulties in that it is impossible to

assign a probability to each event in this event space. By reducing our ambitions with the event

space, we will see in this section that we will be able to come up with an event space which is

rich enough to enable the computation of the probability for any event of practical interest.

Definition 1.4.1. A collection F of subsets of S is a field (or algebra) of subsets of S if the following

properties are all satisfied:

F1: ∅ ∈ F ,

F2: If A ∈ F then Ac ∈ F , and

F3: If A1 ∈ F and A2 ∈ F then A1 ∪ A2 ∈ F .

Example 1.4.1. Consider a single die toss experiment. (a) How many possible events are there?

(b) Is the collection of all possible subsets of S a field? (c) Consider F = {∅, {1, 2, 3, 4, 5, 6},
{1, 3, 5}, {2, 4, 6}}. Is F a field?

Solution. (a) Using the Binomial Theorem, we find that there are

n =
6∑

k=0

C6,k = (1 + 1)6 = 64

possible subsets of S. Hence, the number of possible events is 64. Note that there are only six

possible outcomes.

Each of the collections (b) and (c) is a field, as can readily be seen by checking F1, F2,

and F3 above. �

Theorem 1.4.1. Let A1, A2, . . . , An all belong to the field F . Then

n⋃
i=1

AiεF

and

n⋂
i=1

AiεF
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Proof. Let

Bk =
k⋃

i=1

Ai , k = 1, 2, . . . , n.

Then from F3 we have B2 ∈ F . But then B3 = A3 ∪ B2 ∈ F . Assume Bk−1 ∈ F for some

2 ≤ k < n. Then using F3 we have Bk = Ak ∪ Bk−1 ∈ F ; hence, Bk ∈ F for k = 1, 2, . . . , n.

Using F2, Ac
1, Ac

2, . . . , Ac
n are all in F . The above then shows that

k⋃
i=1

Ac
i ∈ F, k = 1, 2, . . . , n.

Finally, using F2 and De Morgan’s Law:(
k⋃

i=1

Ac
i

)c

=
k⋂

i=1

AiεF . k = 1, 2, . . . , n. �

The above theorem guarantees that finite unions and intersections of members of a field F also

belong to F . The following example demonstrates that countably infinite unions of members

of a field F are not necessarily in F .

Example 1.4.2. Let F be the field of subsets of real numbers containing sets of the form

Ga = (−∞, a].

(a) Find Gc
a . (b) Find Ga ∪ Gb. (c) Find Gc

a ∩ Gb. (d) Simplify

A =
∞⋃

n=1

(
−∞, a − 1

n

]
.

Is A ∈ F ?

Solution

(a) With S = R (the set of all real numbers), we have

Gc
a = {x ∈ S : x 	∈Ga} = {x : a < x < ∞} = (a, ∞).

(b) Using the definition of set union,

Ga ∪ Gb = {x ∈ R : x ≤ a or x ≤ b} = (−∞, max{a, b}].
(c) Using the definition of set intersection,

Gc
a ∩ Gb = (a, ∞) ∩ (−∞, b] = (a, b].

(d) We find

A = (−∞, a − 1] ∪ (−∞, a − 1/2] ∪ (−∞, a − 1/3] · · ·
so that A = (−∞, a) 	∈F . �
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Definition 1.4.2. A collection F of subsets of S is a sigma-field (or sigma-algebra) of subsets of S

if F1, F2, and F3a are all satisfied, where

F3a: If A1, A2, . . . are all in F , then

∞⋃
i=1

Ai ∈F .

Theorem 1.4.2. Let F be a σ -field of subsets of S. Then

(i) F is a field of subsets of S, and

(ii) If Ai ∈ F for i = 1, 2, . . ., then

∞⋂
i=1

Ai ∈F .

Proof. (i) Let A1 ∈ F , A2 ∈ F , and An = ∅ for n = 3, 4, . . . . Then F1 and F3a imply that

∞⋃
i=1

Ai = A1 ∪ A2 ∈F,

so that F3 is satisfied; hence, F is a field. The proof of (ii) is similar to the previous theorem,

following from De Morgan’s Law. �

Definition 1.4.3. Let A be any collection of subsets of S. We say that a σ-field F0 of subsets of S

is a minimal σ-field over A (denoted σ (A)) if A ⊂ F0 and if F0 is contained in every σ-field that

contains A.

Theorem 1.4.3. σ (A) exists for any collection A of subsets of S.

Proof. Let C be the collection of all σ -fields of subsets of S that contain A. Since the collection

of all subsets of S is a σ-field containing A, C is nonempty. Let

F0 =
⋂
F∈C

F .

Since ∅ ∈ F for all F ∈ C , we have ∅ ∈ F0. If A ∈ F0, then A ∈ F for all F ∈ C so that

Ac ∈ F for all F ∈ C ; hence Ac ∈ F0. If A1, A2, . . . are all in F0 then A1, A2, . . . are all in F
for every F ∈ C so that

∞⋃
i=1

Ai ∈ F0.
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Consequently, F0 is a σ-field of subsets of S that contains A. We conclude that F0 = σ (A), the

minimal σ-field of subsets of S that contains A. �

As the astute reader will have surmised by now, we will insist that the event space F be a

σ-field of subsets of the outcome space S. We can tailor a special event space for a given problem

by starting with a collection of events in which we have some interest. The minimal σ-field

generated by this collection is then a legitimate event space, and is guaranteed to exist thanks to

the above theorem. We are (fortunately) not usually required to actually find the minimal σ-field.

Any of the standard set operations on events in this event space yield events which are also in

this event space; thus, the event space is closed under the set operations of complementation,

union, and intersection.

Example 1.4.3. Consider the die-toss experiment and suppose we are interested only in the event

A = {1, 3, 5, 6}. Find the minimal σ-field σ (A), where A = {A}.
Solution. We find easily that

σ (A) = {∅, S, A, Ac }. �
A very special σ-field will be quite important in our future work with probability theory. The

Borel field contains all sets of real numbers in which one might have a “practical interest.”

Definition 1.4.4. Let S =  (the set of all real numbers). The minimal σ-field over the collection

of open sets of  is called a Borel field. Members of this σ-field are called Borel sets.

It is very important to note that all sets of real numbers having practical significance are

Borel sets. We use standard interval notation to illustrate. We have that

(a, b] = {x ∈  : a < x ≤ b} =
∞⋂

n=1

(
a, b + 1

n

)
,

[a, b) = {x ∈  : a ≤ x < b} =
∞⋂

n=1

(
a − 1

n
, b

)
,

and

[a, b] = {x ∈  : a ≤ x ≤ b} =
∞⋂

n=1

(
a − 1

n
, b + 1

n

)
are all Borel sets; hence any countable union or intersection or complement of such sets is also

a Borel set. For example, the set of all positive integers is also a Borel set. Indeed, examples of

sets which are not Borel sets do not occur frequently in applications of probability. We note that

the set of all irrational real numbers is not a Borel set.
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Drill Problem 1.4.1. Find the minimal sigma-field containing the events A and B.

Answer: σ ({A, B}) = {∅, S, A, Ac , B, Bc , A ∪ B, A ∪ Bc , Ac ∪ B, Ac ∪ Bc , Ac ∩ Bc ,

Ac ∩ B, A ∩ Bc , A ∩ B, (Ac ∩ B) ∪ (A ∩ Bc ), (Ac ∩ Bc ) ∪ (A ∩ B)}.
Drill Problem 1.4.2. Simplify:

(a)
∞⋃

n=1

(
a − 1

n
, b + 2

n

)
,

(b)
∞⋂

n=1

(
a − 1

n
, b + 2

n

)
.

Answer: (a − 1, b + 2), [a, b].

1.5 THE PROBABILITY SPACE
In this section, we present a few definitions from a branch of mathematics known as measure

theory. These definitions along with the previous sections enable us to define a probability space.

Measure theory deals with the determination of how “big” a set is—much as a ruler can measure

length. A probability measure reveals how much “probability” an event has.

Definition 1.5.1. A (real-valued) set function is simply a function which has a set as the independent

variable; i.e., a set function is a mapping from a collection of sets to real numbers.

Definition 1.5.2. A set function G defined on a σ-field F is σ-additive if

(i) G(∅) = 0, and

(ii) If A1, A2, . . . are mutually exclusive members of F then

G

( ∞⋃
n=1

An

)
=

∞∑
n=1

G(An).

Definition 1.5.3. Let G be a set function defined on a σ-field F . The set function G is σ-finite if

G(S) < ∞, and nonnegative if G(A) ≥ 0 for all A ∈ F . A nonnegative σ-additive set function G

defined on a σ-field F is called a measure.

Definition 1.5.4. The pair (S,F ), where S is the universal set and F is a σ-field of subsets of S, is

called a measurable space.

The triple (S,F, G), where (S,F) is a measurable space and G is a measure is called a

measure space.

A probability measure P is a σ-finite measure defined on the measurable space (S,F )

with P (S) = 1.
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A probability space (S,F, P ) is a measure space for which P is a probability measure

and (S,F ) is a measurable space.

Using the above definitions is a way of summarizing the previous two sections and in-

troducing a very important and widely used notation: the probability triple (S,F, P ). The

experimental outcome space S is the set of all possible outcomes. The event space F is a σ-field

of subsets of S. The probability measure P assigns a number (called a probability) to each

event in the event space. By insisting that the event space be a σ-field we are ensuring that any

sequence of set operations on a set in F will yield another member of F for which a probability

has either been assigned or can be determined. The above definition of the probability triple is

consistent with the axioms of probability and provides the needed structure for the event space.

We now have at our disposal a very powerful basis for applying the theory of probability.

Events can be combined or otherwise operated on (usually to generate a partition of the event

into “simpler” pieces), and the axioms of probability can be applied to compute (or bound) event

probabilities. An extremely important conclusion is that we are always interested in (at most) a

countable collection of events and the probabilities of these events. One need not be concerned

with assigning a probability to each possible subset of the outcome space.

Let (S,F, P ) be a probability space. For any B ∈ F we define∫
B

d P (ζ ) = P (B). (1.60)

If A1, A2, . . . is a partition of B (with each Ai ∈ F ) then

P (B) =
∞∑

i=1

P (Ai ) =
∞∑

i=1

∫
Ai

dP (ζ ). (1.61)

The integrals above are known as Lebesgue-Stieltjes integrals. Although a thorough

discussion of integration theory is well beyond the scope of this text, the above expressions will

prove useful for evaluating probabilities and providing a concise notation. The point here is that

if we can compute P (Ai ) for all Ai s in a partition of B, then we can compute P (B)—and hence

we can evaluate the integral ∫
B

d P (ζ ) = P (B).

Whether or not B is discrete, a discrete collection of disjoint (mutually exclusive) events

{Ai} can always be found to evaluate the Lebesgue-Stieltjes integrals we shall encounter. The

above integral expressions also illustrate one recurring theme in our application of probability

theory. To compute an event probability, partition the event into pieces (with the probability of

each piece either known or “easily” computed) then sum the probabilities.
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Drill Problem 1.5.1. A pentahedral die (with faces labeled 1, 2, 3, 4, 5) is loaded so that P ({k}) =
k P ({1}), k = 1, 2, 3, 4, 5. Event A = {1, 2, 4}, and event B = {2, 3, 5}. Find∫

A

dP (ζ ),

∫
B

dP (ζ ), and

∫
A ∩B

dP (ζ ).

Answers: 2/15, 7/15, 2/3.

Drill Problem 1.5.2. Let S = [0, 1], A1 = [0, 0.5], A2 = (0.45, 0.7), and A3 = {0.2, 0.5}. As-

sume P (ζ ∈ I ) =length of the interval I ∩ S. Find∫
A1∪A2

dP (ζ ),

∫
A3

dP (ζ ), and

∫
A1∪A2

dP (ζ ).

Answers: 0, 0.05, 0.7.

1.6 INDEPENDENCE
In many practical problems in probability theory, the concept of independence is crucial to

any reasonable solution. Essentially, two events are independent if the occurrence of one of

the events tells us nothing about the occurrence of the other event. For example, consider

a fair coin tossed twice. The outcome of a head on the first toss gives no new information

concerning the outcome of a head on the second toss; the events are independent. Independence

implies that the occurrence of one of the events has no effect on the probability of the other

event.

Definition 1.6.1. The two events A and B are independent if and only if

P (A ∩ B) = P (A)P (B).

We will find that in many problems, the assumption of independence dramatically reduces the

amount of work necessary for a solution. However, independence is used only after we have

verified the events are independent. The only way to test for independence is to apply the

definition: if the product of the probabilities of the two events equals the probability of their

intersection, then the events are independent.

Example 1.6.1. A biased four-sided die, with faces labeled 1, 2, 3 and 4, is tossed once. If the number

which appears is odd, then the die is tossed again. The die is biased in such a way that the probability

of a particular face is proportional to the number on that face. Let event A be an odd number on the

first toss, and event B be an odd number on the second toss. Are events A and B independent?

Solution. From the given information, Table 1.1 is easily filled in. The
√

denotes that the

outcome in that row belongs to the event at the top of the column.
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TABLE 1.1: Summary of Example 1.6.1

TOSS 1 TOSS 2 P(.) A B A ∩ B

1 1 1/100
√ √ √

1 2 2/100
√

1 3 3/100
√ √ √

1 4 4/100
√

2 20/100

3 1 3/100
√ √ √

3 2 6/100
√

3 3 9/100
√ √ √

3 4 12/100
√

4 40/100

From Table 1.1 we obtain P (A) = 0.4 andP (B) = P (A ∩ B) = 0.16. Since

P (A ∩ B) = 0.16 	= P (A)P (B),

the events A and B are not independent. �

Many students are often confused by the relationship between independent and mutually

exclusive events. Generally, two mutually exclusive events can not be independent events since

the occurrence of one of the events implies that the other did not occur.

Theorem 1.6.1. Mutually exclusive events A and B are independent iff (if and only if ) either

P (A) = 0 or P (B) = 0.

Proof. Since A and B are mutually exclusive, we have A ∩ B = ∅ so that P (A ∩ B) =
P (∅) = 0. Hence P (A ∩ B) = P (A)P (B) iff P (A)P (B) = 0. �

The definition of independence can be expanded when more than two events are involved.

Definition 1.6.2. Events A1, A2, . . . , An are independent iff (if and only if )

P (Ak1
∩ Ak2

∩ · · · ∩ Akr
) = P (Ak1

)P (Ak2
) · · · P (Akr

)

where k1, k2, . . . , kr take on every possible combination of integer values taken from {1, 2, . . . , n} for

every r = 2, 3, . . . , n.
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Pairwise independence is a necessary but not a sufficient condition for independence

of n events. To illustrate this definition of independence, consider the conditions that are

required to have three independent events. The events A1, A2, and A3 are independent if and

only if

P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3),

P (A1 ∩ A2) = P (A1)P (A2),

P (A1 ∩ A3) = P (A1)P (A3),

and

P (A2 ∩ A3) = P (A2)P (A3).

The number of conditions, say N, that are necessary to establish independence of n events is

found by summing all possible event combinations

N =
n∑

k=2

(
n

k

)
From the Binomial Theorem we have

(1 + 1)n =
n∑

k=0

(
n

k

)
= 1 + n + N = 2n;

hence the total number of conditions is N = 2n − n − 1, for n ≥ 2.

Theorem 1.6.2. Suppose event A can be expressed in terms of the events A1, A2,. . . , Am, and the

event B can be expressed in terms of the events B1, B2, . . . , Bn. If the collections of events {Ai}m
i=1

and {Bi}n
i=1 are independent of each other, i.e., if

P (Ak1
∩ Ak2

∩ · · · ∩ Akq
∩ B�1

∩ B�2
∩ · · · ∩ B�r

)

= P (Ak1
∩ Ak2

∩ · · · ∩ Akq
)P (B�1

∩ B�2
∩ · · · ∩ B�r

)

for all possible combinations of ki s and � j s, then the events A and B are independent.

Proof. Let {Ci} be a partition of the event A and let {Di} be a partition of the event B. Then

P (A ∩ B) =
∑

i

∑
j

P (Ci ∩ Dj ) =
∑

i

P (Ci )
∑

j

P (Dj );

hence, P (A ∩ B) = P (A)P (B). �

Example 1.6.2. In the circuit shown in Fig. 1.10, switches operate independently of one another,

with each switch having a probability of being closed equal to p. After monitoring the circuit over a
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3

1

2

4

5 YX

FIGURE 1.10: Circuit for Example 1.6.2

long period of time, it is observed that there is a closed path between X and Y 16.623% of the time.

Find p.

Solution. Let Ci be the event that switch i is closed. A description of the circuit is then given

by

P (A ∩ C5) = 0.16623,

where A = C1 ∪ C2 ∪ (C3 ∩ C4). Since A and C5 are independent,

P (A ∩ C5) = P (A)P (C5) = p P (A) = 0.16623.

With B = C1 ∪ C2 and D = C3 ∩ C4 we have

P (A) = P (B ∪ D) = P (B) + P (D) − P (B ∩ D),

P (B) = P (C1) + P (C2) − P (C1 ∩ C2) = 2p − p2,

and

P (D) = p2.

Since B and D are independent,

P (B ∩ D) = P (B)P (D) = (2p − p2)p2,

so that

P (A) = (2p − p2)(1 − p2) + p2 = p4 − 2p3 + 2p

and

P (C) = p P (A) = p5 − 2p4 + 2p2 = 0.16623.

Iterative solution yields p = 0.3.
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Drill Problem 1.6.1. A coin is tossed three times. The coin is biased so that a tail is twice as likely

to occur as a head. Let A equal the event that two heads and one tail occur and B equal the event that

more heads than tails occur. Are events A and B independent?

Answer: No.

1.7 JOINT PROBABILITY
In this section, we introduce some notation which is useful for describing combined experiments.

We have seen a number of examples of experiments which can be considered as a sequence of

subexperiments—drawing five cards from a deck, for example.

Consider an experiment ε consisting of a combination of the n subexperiments εi ,

i = 1, 2, . . . , n. We denote this combined experiment by the cartesian product:

ε = ε1 × ε2 × · · · × εn. (1.62)

With Si denoting the outcome space for εi , we denote the outcome space S for the combined

experiment by

S = S1 × S2 × · · · × Sn; (1.63)

hence, when the outcome of εi is ζi ∈ Si , i = 1, 2, . . . , n, the outcome of ε is

ζ = (ζ1, ζ2, . . . , ζn) ∈ S. (1.64)

The probability that event A1 occurs in ε1 and event A2 occurs in ε2,. . . , and An occurs in εn

is called the joint probability of A1, A2, . . ., and An; this joint probability is denoted by

P (A) = P (A1, A2, . . . , An), (1.65)

where A = A1 × A2 × · · · × An. Note that event A is the (ordered) sequence event discussed

in Section 1.2.3. Let (Si ,Fi , Pi ) denote the probability space for εi , and let (S,F, P ) denote

the probability space for ε. Note that the event space for ε is F = F1 × F2 × · · · × Fn. Letting

A ′
i = S1 × · · · × Si−1 × Ai × Si+1 × · · · × Sn, (1.66)

we find that

P (A) = P (A ′
1 ∩ A ′

2 ∩ · · · ∩ A ′
n). (1.67)

In particular, we may find Pi (Ai ) from P (·) using

Pi (Ai ) = P (A ′
i ) = P (S1, . . . , Si−1, Ai , Si+1, . . . , Sn). (1.68)
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We sometimes (as in the previous examples) simply write

P (A) = P (A1 A2 · · · An) (1.69)

for the probability that the sequence event A = A1 A2 · · · An occurs. We also sometimes abuse

notation and treat P (A1), P1(A1), and P (A ′
1) as identical expressions.

It is important to note that, in general, we cannot obtain P (·) from P1(·), P2(·), . . ., and

Pn(·). An important exception is when the experiments ε1, ε2, · · · , εn are independent.

Definition 1.7.1. The experiments ε1, ε2, · · · , εn are independent iff

P (A) = P1(A1)P2(A2) · · · Pn(An) (1.70)

for all Ai ∈ Fi , i = 1, 2, . . . , n.

Example 1.7.1. A combined experiment ε = ε1 × ε2 consists of drawing two cards from an ordinary

deck of 52 cards. Are the subexperiments independent?

Solution. Consider the drawing of two hearts. We have

P (H1 H2) = 13 × 12

52 × 51
= 1

17
,

P1(H1) = 13

52
= 1

4
,

and

P2(H2) = P (H1 H2) + P (XH2) = 1

17
+ 39 × 13

52 × 51
= 1

4
,

where X consists of the 39 non-heart cards. Hence, the subexperiments ε1 and ε2 are not

independent since

P (H1 H2) = 1

17
	= 1

16
= P1(H1) P2(H2). �

Drill Problem 1.7.1. A combined experiment ε = ε1 × ε2 consists of drawing two cards from an

ordinary deck of 52 cards. Let H1 denote the drawing of a heart on the first draw, and H2 denote the

drawing of a heart on the second draw. Let H1 = H1 × S2 and H ′
2 = S1 × H2. Find P (H ′

1 ), P (H ′
2 ),

and P (H ′
2 ∩ H ′

1 ).

Answers: 1/17, 1/4, 1/4.
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1.8 CONDITIONAL PROBABILITY
Assume we perform an experiment and the result is an outcome in event A; that is, additional

information is available but the exact outcome is unknown. Since the outcome is an element

of event A, the chances of each sample point in event A occurring have improved and those in

event Ac occurring are zero. To determine the increased likelihood of occurrence for outcomes

in event A due to the additional information about the result of the experiment, we scale or

correct the probability of all outcomes in A by 1
P (A)

.

Definition 1.8.1. The conditional probability of an event B occurring, given that event A occurred,

is defined as

P (B|A) = P (A ∩ B)

P (A)
, (1.71)

provided that P (A) is nonzero.

Note carefully that P (B|A) 	= P (A|B). In fact, we have

P (A|B) = P (A ∩ B)

P (B)
= P (B|A)P (A)

P (B)
. (1.72)

The vertical bar in the previous equations should be read as “given,” that is, the symbol P (B|A)

is read “the probability of B, given A.” The conditional probability measure is a legitimate

probability measure that satisfies each of the axioms of probability.

Using the definition of conditional probability, the events A and B are independent if

and only if

P (A|B) = P (A ∩ B)

P (B)
= P (A)P (B)

P (B)
= P (A).

Similarly, A and B are independent if and only if P (B|A) = P (B). Each of the latter conditions

can be (and often is) taken as an alternative definition of independence. The one difficulty with

this is the case where either P (A) = 0 or P (B) = 0. If P (B) = 0, we can define P (A|B) =
P (A); similarly, if P (A) = 0, we can define P (B|A) = P (B).

Conditional probabilities, given event A ∈ F , on the probability space (S,F, P )

can be treated as unconditional probabilities on the probability space (SA,FA, PA), where

SA = S ∩ A = A, FA is a σ-field of subsets of SA, and PA is a probability measure. The

σ-field is FA the restriction of F to A defined by

FA = {A ∩ B : B ∈ F}.
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The proof that FA is indeed a σ-field of subsets of SA is left to the reader (see Problem 1.45).

The probability measure PA is defined on the measurable space (SA,FA) by

PA(BA) = P (B ∩ A)

P (A)
= P (B|A). (1.73)

If P (A) = 0 we may define PA to be any valid probability measure; in this case, PA(BA) = P (B)

is often a convenient choice.

Now consider the conditional independence of events A and B, given an event C occurred.

Above, we interpreted a conditional probability as an unconditional probability defined with

a sample space equal to the given event. Thus, the conditional independence of A and B is

established in the new sample space C by testing

PC (AC ∩ BC ) = PC (AC )PC (BC )

or in the original sample space by testing

P (A ∩ B|C) = P (A|C)P (B|C).

Note that independent events are not necessarily conditionally independent (given an arbitrary

event).

Example 1.8.1. A number is drawn at random from S = {1, 2, . . . , 8}. Define the events

A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, and C = {3, 4, 5, 6, 7, 8}. (a) Are A and B independent?

(b) Are A and B independent, given C?

Solution. (a) We find P (A) = P (B) = 1/2 and P (A ∩ B) = 1/4 = P (A)P (B), so that A and

B are independent. (b) We find P (A|C) = 1/3, P (B|C) = 2/3, and P (A ∩ B|C) = 1/3, so

that A and B are not independent, given C .

Random Sampling of Waveform

One is often interested in studying the frequency of occurrence of certain events even when the

observed phenomena is inherently deterministic (not random). Here, we consider the “random”

sampling of a deterministic waveform. Sample the time function f (t) uniformly at t = kT, for

k = 0, 1, . . . , N − 1, where T > 0 is called the sampling period. The outcome space for the

experiment is the set of all pairs of k and f (kT ): S = {(k, f (kT )) : k = 0, 1, . . . , N − 1}. We

assume that each outcome in the outcome space is equally likely to occur.

Example 1.8.2. The waveform shown in Fig. 1.11 is uniformly sampled every one-half second

from (T = 0.5). Define the events A = { f (kT) > 5/4}, B = {0.5 ≤ f (kT) < 2}, and C = {2 ≤
t < 3}. Find (a) P (A|B), (b)P (C), (c )P (B|C).
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Solution. There are nine equally likely outcomes. In the following list, a check in the appro-

priate row indicates whether the sample point ζ is an element of event A, B, or C .

SAMPLE POINT, ζ A B C

(0,0)

(1,0.5)
√

(2,1)
√

(3,1.5)
√ √

(4,2)
√ √

(5,1.5)
√ √ √

(6,1)
√

(7,0.5)
√

(8,0)

(a) With the aid of the above list, we find P (A) = 3/9, P (B) = 6/9, and P (A ∩ B) = 2/9.

Hence

P (A | B) = P (A ∩ B)

P (B)
= 2/9

6/9
= 1

3
.

(b) We find P (C) = 2/9.

(c) We have P (B ∩ C) = 1/9, so that

P (B|C) = P (B ∩ C)

P (C)
= 1/9

2/9
= 1

2
. �

Probability Tree

A probability tree is a natural extension of both the concept of conditional probability and the

tree diagram. The tree diagram is drawn with the tacit understanding that the event on the right

side of any branch occurs, given that the sequence event on the pathway from the origin to the

left side of the branch occurred. On each branch, we write the conditional probability of the

2

2

0 t

f(t)

4

FIGURE 1.11: Waveform for Example 1.8.2
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event at the node on the right side of the branch, given the sequence event on the pathway from

the origin to the node on the left side of the branch. The probabilities for the branches leaving the

origin node are, of course, written as unconditioned probabilities (note thatP (A|S) = P (A)).

The probability of each event equals the product of all the branch probabilities connected from

the origin to its terminal node. A tree diagram with a probability assigned to each branch is a

probability tree. The following theorem and its corollary justify the technique.

Theorem 1.8.1. For arbitrary events A1, A2, . . . , An we have

P (A1 ∩ A2 ∩ · · · ∩ An)

= P (A1)P (A2|A1)P (A3|A1 ∩ A2) · · · P (An|A1 ∩ A2 ∩ · · · ∩ An−1).
(1.74)

Proof. For any k ∈ {2, 3, . . . , n}, we have

P (A1 ∩ A2 · · · ∩ Ak) = P (Ak |A1 ∩ A2 · · · ∩ Ak−1)P (A1 ∩ A2 · · · ∩ Ak−1);

applying this for k = n, n − 1, . . . , 2 establishes the desired result. �

The above theorem provides a useful expansion for the probability of the intersection of

n events in terms of conditional probabilities. An intersection of n events is not an ordered

event; however, the treatment of joint probabilities in the previous section enables us to apply

the above theorem to an (ordered) sequence event and establish the following corollary.

Corollary 1.8.1. The probability for the sequence event A1 A2 · · · An may be expressed as

P (A1 A2 · · · An) = P (A1)P (A2|A1)P (A3|A1 A2) · · · P (An|A1 A2 · · · An−1). (1.75)

Example 1.8.3. Two cards are drawn at random from an ordinary deck of 52 cards without replace-

ment. Find the probability p that both are spades.

Solution. Let us set up a probability tree with event Si denoting a spade drawn on the ith

draw, as shown in Fig. 1.12. The probability of any event in the probability tree is equal to the

product of all of the conditional probabilities of the branches connected on the pathway from

the origin to the left of the event. Therefore

p = P (S1S2) = P (S1)P (S2|S1) = 13

52

12

51
= 1

17
.

Partitioning a sample space often simplifies a problem solution. The Theorem of Total Proba-

bility provides analytical insight into this important process.
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1
cP(S )

1S
P(S )1

1

cS

2 1P(S |S )

2 1

cP(S |S ) 1 2

cS S

1 2S S

38 39
52 51

13 39
51 52

13 12
52 51

39 13
51 52

1 2

c cS S

1 2
cS S2 1

cP(S |S )

2 1

c cP(S |S )

Event P(.)

FIGURE 1.12: Probability tree for Example 1.8.3

Theorem 1.8.2 (Total Probability). Let A1, A2, . . . , An be a partition either of S or of B. Then

P (B) =
n∑

i=1

P (B|Ai )P (Ai ). (1.76)

Proof. We have

B = B ∩ (A1 ∪ A2 ∪ · · · ∪ An)

so that

P (B) =
n∑

i=1

P (B ∩ Ai ) =
n∑

i=1

P (B|Ai )P (Ai ). �

Partitioning a sample space is usually logical and can result in a solution of what appears at first

to be an extremely difficult problem. In fact, the Theorem of Total Probability allows us to

easily solve problems that have previously been solved by using a probability tree, as in the next

example.

Example 1.8.4. We have four boxes with a composition of defective light bulbs as follows: Box Bi

contains 5%, 40%, 10%, and 25% defective light bulbs for i = 1, 2, 3, and 4, respectively. Pick a box

and then pick a light bulb from that box at random. What is the probability that the light bulb is

defective?

Solution. We solve this problem first using a probability tree and then by applying the Theorem

of Total Probability. Since each box is equally likely, we have P (Bi ) = 1/4 for i = 1, 2, 3, 4.

Let D be the event that a defective light bulb is selected. From the probability tree shown in
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D

D

D

D

cD

cD

cD

cD

P(.)

B1

.25

B3

B4

B1.25

.25
.25

.05

.95
.4

.6

.1

.9
.25

.75

0.0125
0.2375

0.1
0.15

0.025
0.225
0.0625
0.1875

Defective

FIGURE 1.13: Probability tree for Example 1.8.4

Fig. 1.13 we have

P (D) =
4∑

i=1

P (Bi ∩ D) = 0.0125 + 0.1 + 0.025 + 0.0625 = 0.2.

From the Theorem of Total Probability,

P (D) =
4∑

i=1

P (Bi )P (D|Bi ) = 1

4
(0.05 + 0.4 + 0.1 + 0.25) = 0.2. �

A Posteriori Probabilities

The probabilities that have been computed in all of our previous examples are known as a priori

probabilities. That is, we are computing the probability of some event that may or may not occur

in the future. Time is introduced artificially, but it allows us to logically follow a sequence. Now,

suppose that some event has occurred and that our observation of the event has been imperfect.

Given our imperfect observation, can we deduce a conditional probability for this event having

occurred? The answer is yes, such a probability is known as an a posteriori probability and Bayes’

Theorem provides a method of computing it.

Theorem 1.8.3 (Baye’s Theorem). Let A1, A2, . . . , An be a partition of the outcome space S, and

let B ∈ F be an arbitrary event. Then

P (Ai |B) = P (Ai )P (B|Ai )∑n
j=1 P (A j )P (B|A j )

. (1.77)
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Scource Transmitter Channel Receiver

FIGURE 1.14: Typical communication system

Proof. From the definition of conditional probability,

P (Ai |B) = P (Ai ∩ B)

P (B)
= P (Ai )P (B|Ai )

P (B)
.

Using the Theorem of Total Probability to express P (B) yields the desired result. �

Example 1.8.5. In Example 1.8.4, suppose the light bulb was defective. What is the probability it

came from Box 2?

Solution. From Bayes’ Theorem

P (B2|D) = P (B2)P (D|B2)

P (D)
= 0.1

0.2
= 0.5.

Example 1.8.6. The basic components of a binary digital communication system are shown in

Fig. 1.14. Every T seconds, the source puts out a binary digit (a one or a zero), which is transmitted

over a channel to the receiver. The channel is typically a telephone line, a fiber optic cable, or a radio

link, subject to noise which causes errors in the received digital sequence, a one is interpreted as a zero

and vice versa. Let us include the uncertainty introduced due to noise in the channel for any period with

the probability tree description shown in Fig. 1.15, where Si is the binary digit i sent by the source,

and Ri is the binary digit i captured by the receiver.

Determine (a) the probability of event C, the signals are received with no error, and (b) which

binary digit has the greater probability of being sent, given the signal was received correctly.

P(S1) = 0.3

0S
P(S0) = 0.7

1S

1R

P(R0|S0) = 0.8

P(R1|S0) = 0.2

P(R0|S1) = 0.1

P(R1|S1) = 0.9

0R

1R

0R

FIGURE 1.15: Probability tree for Example 1.8.6
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Solution

(a) From the Theorem of Total Probability

P (C) = P (S0)P (R0|S0) + P (S1)P (R1|S1) = 7

10

8

10
+ 3

10

9

10
= 0.83.

(b) From Bayes’ Theorem, we determine

P (S0|C) = P (S0)P (C |S0)

P (C)
= (7/10)(8/10)

83/100
= 56

83

and

P (S1|C) = P (S1)P (C |S1)

P (C)
= (3/10)(9/10)

83/100
= 27

83

which implies that a zero has the greater probability of being sent correctly. �

Drill Problem 1.8.1. The waveform f (t) is uniformly sampled every 0.1s from 0 to 4 s, where

f (t) =
{

2t if 0 ≤ t ≤ 2

4e−2(t−2) if 2 < t ≤ 4.

Evaluate the probability that: (a) f (t) ≤ 1; (b) f (t) ≥ 2, given f (t) ≤ 3; (c) a value is from the

f (t) = 2t portion of the curve, given f (t) ≤ 1.

Answers: 8/35, 20/41, 6/20.

Drill Problem 1.8.2. Two balls are drawn without replacement from an urn that contains four

green, six blue, and two white balls. Evaluate the probability that: (a) both balls are white; (b) one

ball is white and one ball is green; (c) the first ball is blue, given that the second ball is green.

Answers: 24/44, 16/132, 2/132.

Drill Problem 1.8.3. The waveform f (t) is uniformly sampled every 0.1 s from −1 to 2 s, where

f (t) =

⎧⎪⎨⎪⎩
−t if − 1 ≤ t ≤ 0

t if 0 < t ≤ 1

sin
(

1
2
π t

)
if 1 < t ≤ 2.

Evaluate the probability that: (a) f (t) ≤ 0.5, given −1 ≤ t ≤ 0; (b) f (t) ≤ 0.5, given 0 < t ≤ 1;

(c ) f (t) ≤ 0.5, given 1 < t ≤ 2; (d ) f (t) ≤ 0.5; (e ) − 1 ≤ t ≤ 0, given f (t) ≤ 0.5.

Answers: 6/15, 1/2, 6/11, 4/10, 15/31.
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Drill Problem 1.8.4. Four boxes contain the following quantity of marbles.

RED BLUE GREEN

Box 1 6 3 2

Box 2 5 4 0

Box 3 3 3 4

Box 4 2 9 7

A box is selected at random and the marble selected is green. Determine the probability that: (a) box 1

was selected, (b) box 2 was selected, (c) box 3 was selected, (d) box 4 was selected.

Answers: 0, 385/961, 180/961, 396/961.

1.9 SUMMARY
In this chapter, we have studied the fundamentals of probability theory upon which all of

our future work is based. Our discussion began with the preliminary topics of set theory, the

sample space for an experiment, and combinatorial mathematics. Using set theory notation,

we developed a theory of probability which is summarized by the probability space (S,F, P ),

where S is the experimental outcome space, F is a σ-field of subsets of S (F is the event space),

and P is a probability measure which assigns a probability to each event in the event space. It is

important to emphasize that the axioms of probability do not dictate the choice of probability

measure P . Rather, they provide conditions that the probability measure must satisfy. For the

countable outcome spaces that we have seen so far, the probabilities are assigned using either

the classical or the relative frequency method.

Notation for joint probabilities has been defined. The concept of joint probability is

useful for studying combined experiments. Joint probabilities may always be defined in terms

of intersections of events.

We defined two events A and B to be independent iff (if and only if )

P (A ∩ B) = P (A)P (B).

The extension to multiple events was found to be straightforward.

Next, we introduced the definition for conditional probability as the probability of event

B, given event A occurred

P (B|A) = P (A ∩ B)

P (A)
,
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FIGURE 1.16: Partial tree diagram for Example 1.9.1

provided that P (A) 	= 0. The extension of the definition of conditional probability to multiple

events involved no new concepts, just application of the axioms of probability. We next presented

the Theorem of Total Probability and Bayes’ Theorem.

Thus, this chapter presented the basic concepts of probability theory and illustrated

techniques for solving problems involving a countable outcome space. The solution, as we have

seen, typically involves the following steps:

1. List or otherwise describe events of interest in an event space F,

2. Assignment/computation of probabilities, and

3. Solve for the desired event probability.

The following example illustrates each of these steps in the solution.

Example 1.9.1. An experiment begins by rolling a fair tetrahedral die with faces labeled 0, 1, 2, and

3. The outcome of this roll determines the number of times a fair coin is to be flipped.

(a) Set up a probability tree for the event space associating the outcome of the die toss and the

number of heads flipped.

(b) If there were two heads tossed, then what is the probability of a 2 resulting from the die toss?

Solution. Let n be the value of the die throw, and k be the total number of heads resulting

from the coin flips.

(a) Since it is fairly difficult to draw the probability tree for this experiment directly, we shall

develop it in stages. We first draw a partial probability tree shown in Fig. 1.16(a) for

the case in which the die outcome is two and the coin is flipped twice. This probability

tree can be compressed into a more efficient event space representation as shown in
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FIGURE 1.17: Tree diagram for Example 1.9.1

Fig. 1.16(b). It should be clear that the probability of any face occurring on the die

toss is equal to 1/4 and that the values that k takes on as well as the probabilities are

dependent on n.

We can draw the probability tree for the entire event space by continuing in the same

manner as before. The result is shown in Fig. 1.17.

(b) Using Bayes’ Theorem,

P (n = 2|k = 2) = P (n = 2)P (k = 2|n = 2)

P (k = 2)
.

To find P (k = 2) we can use the tree diagram and sum the probabilities for all events

that have k = 2 or use the Theorem of Total Probability to obtain

P (k = 2) = P (k = 2|n = 2)P (n = 2) + P (k = 2|n = 3)P (n = 3),

so that P (k = 2) = 1
16

+ 3
32

= 5
32

. Finally,

P (n = 2|k = 2) = (1/4)(1/4)

5/32
= 2

5
.

Drill Problem 1.9.1. Professor S. Rensselaer teaches a course in probability theory. She is a kind-

hearted but very tricky old lady who likes to give many unannounced quizzes each week. She determines

the number of quizzes each week by tossing a fair tetrahedral die with faces labeled 0, 1, 2, and 3. The

more quizzes she gives, however, the less time she has to assign and grade homework problems. If Ms.

Rensselaer is to give Q quizzes during the next week, then the conditional probability she will assign
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H homework problems is given by

P (H|Q) =
{

1
4−Q

, if 1 ≤ H ≤ 4 − Q

0 otherwise.

Determine the probability: (a) that two homework problems are assigned during the week; (b) of one

quiz during the week that two homework problems were assigned; (c) that two homework problems

are assigned, given at least one quiz during the week.

Answers: 5/18, 13/48, 4/13.

1.10 PROBLEMS
1.1. Let A ∪ (Ac ∪ Bc )c = {1, 5, 8}, A ∪ (Ac ∩ B) ∪ (A ∩ B ∩ C) = {1, 2, 5, 8, 9}, and

(Cc ∪ Ac )c ∪ (Cc ∪ A)c = {1, 5, 7}. Furthermore, A and B are mutually exclusive, and

A, B, and C , are collectively exhaustive. Determine: (a) A, (b) B, (c) Cc , (d) S.

1.2. Given a sample space S = {−1.0, −0.9, −0.8, . . . , 1.8, 1.9, 2.0}, and the following six

sets in the sample space:

A = {x : −1 ≤ x ≤ 0}, B = {x : −x ≤ 1/2},
C = {x : 0 < x ≤ 1}, D = {x : x ≤ 1/2},
E = {x : 1 < x ≤ 2}, F = {x : sin(πx/2) ≤ 1/2}.

Note that all elements of A, B, etc. must also be in S. Find: (a) A ∩ B, (b) C ∩ D, (c)

E ∩ F , (d) (A ∩ B) ∪ (A ∩ Bc ) ∪ (Ac ∪ B), (e) A ∪ ((Ac ∪ Cc )c ∩ B).

1.3. Let the sample space be all real numbers, and define the sets A = {x : x > 0}, B = {x :

x/2 is an integer} and C = {x : 2 < x < 8} be defined on the sample space. Find: (a)

(A ∩ C) ∪ B, (b) Ac ∩ B, (c) A ∩ Cc , (d) A ∩ B ∩ C , (e) A ∪ B ∪ C .

1.4. Prove that if B ⊂ A then (a) A ∪ B = A, and (b) A ∩ B = B.

1.5. Simplify: (a) (A ∩ B) ∪ (A ∩ Bc ), (b) (Dc ∩ Cc ) ∪ (C ∩ Dc ), (c) (A ∩ B) ∩ (Bc ∩ A),

(d) Dc ∩ Cc ∩ Dc ∩ C .

1.6. Prove or give a counterexample:

(a) If A ∪ B = A ∪ C then B = C .

(b) If A ∩ B = A ∩ C then B = C .

1.7. Prove that if A ∩ B = ∅, A ∩ C = ∅, and A ∪ B = A ∪ C , then B = C .
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1.8. Prove the following identities for arbitrary sets A, B, and C :

(a) A = (A ∩ B) ∪ (A ∩ Bc ),

(b) A ∪ (Ac ∩ B) = B ∪ (A ∩ Bc ),

(c) (A ∪ B) ∩ (A ∪ Bc ) = A,

(d) (A ∪ B) ∩ (A ∩ B)c = (A ∩ Bc ) ∪ (B ∩ Ac ),

(e) (A ∩ B) ∪ ((A ∩ B) ∪ (Ac ∩ Bc ))c = A ∪ B,

(f) (A ∩ B ∩ Cc ) ∪ ((A ∩ C) ∪ (Ac ∩ B ∩ C) ∪ (Bc ∩ C))c = Cc .

1.9. Determine the validity of the following relationships for arbitrary sets A, B, and C .

(a) (Ac ∩ (C ∪ B)c ) ∪ (Ac ∩ B) ∪ ((A ∪ (Ac ∩ B))c ∩ C) = Ac ∩ Bc ,

(b) (A ∪ B) ∩ (A ∩ B)c = (A ∩ Bc ) ∪ (B ∩ Ac ) ∪ (A ∩ Bc ∩ C),

(c) (A ∪ B ∪ C)c ∪ (Ac ∩ Bc ∩ Cc ) = (Ac ∪ Bc ∪ Cc )c .

1.10. If A1, A2, A3 and A4 are mutually exclusive sets and B ⊂ (A1 ∪ A2 ∪ A3 ∪ A4), then

show that

B = (A1 ∩ B) ∪ (A2 ∩ B) ∪ (A3 ∩ B) ∪ (A4 ∩ B)

and illustrate with a Venn diagram.

1.11. (a) The sets A and B are mutually exclusive and collectively exhaustive. Are Ac and

Bc mutually exclusive? Prove it.

(b) The sets A and B are mutually exclusive but not collectively exhaustive. Are Ac and

Bc mutually exclusive? Prove it.

(c) The sets A and B are mutually exclusive but not collectively exhaustive. Are Ac and

Bc collectively exhaustive? Prove it.

(d) The sets A and B are collectively exhaustive but not mutually exclusive. Are Ac and

Bc collectively exhaustive? Prove it.

1.12. Let S = {(x, y) : x ≥ 0, y ≥ 0}, A = {(x, y) : x + y ≥ 1}, B = {(x, y) : xy < 1}, and

C = {(x, y) : x < y}. Sketch the following sets in a coordinate space. (a) (A ∩ B)c ,

(b) A ∩ C , (c) A ∪ (Ac ∩ B), (d) (A ∪ (Ac ∩ B))c ∩ C .

1.13. Four boxes contain marbles labeled with numbers as shown:

MARBLES

Box 1 1, 2, 3, 4, 5

Box 2 1, 2

Box 3 3, 5, 7

Box 4 1, 2, 4
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1.14. Five playing cards, two spades, a heart, a diamond and a club, are shuffled and placed

face downwards on a table. An experiment consists of drawing a card and noting its

suit, then drawing another card (without replacing the first card) and noting its suit.

Illustrate the sample space with a coordinate system and then with a tree diagram.

1.15. An experiment consists of tossing a coin until either three heads or two tails have

appeared (not necessarily in a row). Illustrate the sample space with a tree diagram.

1.16. A transistor having three leads (an emitter, base, and collector) is connected to three

points in a network. How many ways can the transistor be connected? Draw a tree

diagram illustrating all possible outcomes and list the sample space.

1.17. A class of five students is given two As and three Bs. Draw a tree diagram illustrating

all possible ways the grades can be assigned.

1.18. Urn 1 contains five red, two white, and three blue balls. Urn 2 contains three red and

one white balls. A ball is drawn at random from urn 1 and placed in urn 2. A ball is

then drawn at random from urn 2. Illustrate the sample space using a tree diagram.

1.19. An experiment of measuring resistance is performed. Find and classify the sample space.

1.20. The reactive part of an impedance is measured. Find and classify the sample space.

1.21. Let A = {3, 4}, B = {1, 2, 6}, and C = [1, 3]. Find D = A × B, E = B × A, and

F = A × C . Sketch D, E, and F using a coordinate system representation. Sketch a

tree diagram for D and E.

1.22. Consider the letters A through F being elements of S. If each letter can only be used

once, then determine the number of three letter words (a) possible, (b) possible if the

letter E is second, (c) possible if a vowel must be included, (d) possible if the letters

A and F (together) are included only when the letter C is present.

1.23. An experiment involves rolling three colored, six-sided dice (yellow, red, and blue). (a)

What are the total number of outcomes possible? (b) How many outcomes are possible

if the red die shows a three? (c) How many outcomes are possible if the red die shows

an even number? (d) How many outcomes are possible if each die shows a different

number?

1.24. Twelve runners, A through L, have entered a race. They are competing for first, second,

and third places. Determine the number of finishes: (a) possible; (b) if runner G finishes

first; (c) if runner C finishes in one of the first three places; (d) if runner D trips and

does not even finish the race; (e) if one and only one of the runners, A, B, or C , finishes

in one of the first three places.

1.25. In how many ways can four red, four blue and two green flags be hung (a) in a row,

(b) in a row if the end flags are red?
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1.26. A class of 40 students is awarded grades of A, B, C, D, and F. Determine the number

of ways the grades can be awarded if: (a) there are 5 As, 10 Bs, 15 Cs, 5 Ds, and 5 Fs;

(b) all As are given; and (c) there are 20 As and 20 Bs.

1.27. A not too bright electrical engineering student was told to solder a 16 conductor cable

to a connector. Since the student lost the wiring diagram he decided to arbitrarily make

connections until it worked. How many ways could he connect it?

1.28. Five components are selected from a very large bin of components. Each component

is either good or defective. How many ways can a group of five components: (a) have

exactly three good components, (b) at least three good components?

1.29. In how many ways can a set of nine distinct elements be partitioned in three group-

ings consisting of two, three and four elements, if the ordering in each grouping is:

(a) unimportant, (b) important.

1.30. A change purse contains five nickels, eight dimes, and three quarters. Assume each coin

is distinct and the order of selection is unimportant. Determine the number of ways

to select: (a) a single dime, (b) exactly 60 cents if three coins are selected, (c) exactly

60 cents if four coins are selected, (d) exactly 60 cents.

1.31. Repeat Problem 30 if (i) the dimes, nickels and quarters, are indistinguishable,

(ii) order of selection is important, (iii) order of selection is important and similar

coins indistinguishable.

1.32. A club is made up of six doctors, seven lawyers, and five plumbers. A committee of four

is to be selected from the club members. (a) In how many ways can the committee be

formed? (b) In how many ways can the committee be formed if at least one plumber is

on the committee? (c) How many committees can be formed with exactly two doctors?

(d) In how many ways can the committee be formed if one particular doctor and one

particular lawyer won’t serve on the committee together?

1.33. A fair die is rolled ten times. We are only interested in the fifth face being up or not.

How many ways can the fifth face be up: (a) exactly once, (b) at least once?

1.34. Consider an ordinary deck of 52 playing cards. (a) How many different hands of five

cards can be drawn? (b) How many different hands containing four aces and one other

card can be formed? (c) Comment on why the hand with four aces is unlikely.

1.35. A man has been dealt five cards from a standard 52 card deck: two spades, two hearts,

and a diamond. He sets these cards aside, and is dealt five more cards. What is the

probability that of these five new cards: (a) all are spades? (b) two are hearts and two

are diamonds? (c) none are diamonds or spades?

1.36. Prove that if A ∩ B = ∅, then P (A) ≤ P (Bc ).
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1.37. Prove that

P (A ∪ B ∪ C) = P (A) + P (B) + P (C) − P (A ∩ B) − P (A ∩ C)

−P (B ∩ C) + P (A ∩ B ∩ C).

1.38. Two fair dice are tossed. What is the probability that: (a) the sum of seven will appear?

(b) the sum of two will appear? (c) the sum of ten will appear?

1.39. A box contains 30 transistors. Three of the transistors are known to be defective. What

is the probability that four of the transistors selected at random are good?

1.40. Four runners have entered a race. Runner A is twice as likely to win as runner B. Runner

C is three times as likely as B to win, and D is twice as likely as A to win. What is the

probability that A or B win the race?

1.41. A four-sided die is loaded so that a one or a two is four times as likely to occur as a

three or a four. The die is rolled twice. Let x denote the sum of the two rolls. Define

the events A, B, and C as A = {x : xis even}, B = {x : x ≤ 4}, and C = {x : x > 5}.
Determine: (a) P (A), (b) P (B), (c) P (C), (d) P (A ∪ B), (e) P (B ∪ C), (f ) P (Ac ∪ Bc ).

1.42. What is the probability that a hand of five cards drawn at random from a standard deck

of 52 cards will contain (a) the ace, king, queen, jack, and ten of clubs? (b) the ace, king,

queen, jack, and ten of any one suit? (c) four of a kind? (d) a full house?

1.43. An urn contains three red and seven blue marbles. If two of the marbles are drawn at

random without replacement, find the probability that (a) both are blue, (b) both are

red, (c) one is red and the other is blue.

1.44. A fair die is tossed once. Event A = {1, 2, 3} and event B = {2, 4, 5}. (a) Find the

minimal σ-field containing events A and B. (b) How many elements are in the σ-field

containing all subsets of S?

1.45. Let F be a σ-field of subsets of S. Let A ⊂ S, with A not necessarily in F . Define

FA = {A ∩ E : E ∈ F}.

Show that FA is a σ -field of subsets of A. The σ -field FA is called the restriction of F
to A.

1.46. A two bit binary word can be formed in four ways. The probability of the four single

element events are P ({11}) = 5/16, P ({10}) = 3/16, P ({01}) = 3/16, and P ({00}) =
5/16. Can this experiment consist of two independent trials?

1.47. We are given that events A and B are independent. (a) Are Ac and B independent?

Prove it. (b) Are Ac and Bc independent? Prove it.
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1.48. Let A and B be two events with P (A) = 0.02, P (B ∩ Ac ) = 0.01, and P (A ∩ B) =
0.015. Determine: (a) if A and B are independent, (b) P (A ∩ Bc ).

1.49. Let A and B be two events with P (A) = 1/8, P (B) = 1/4, and P (A ∪ B) = 5/16.

Determine: (a) P (B ∩ Ac ), (b) P (A ∪ Bc ), (c) P (A|B), (d) P (Ac |B).

1.50. County Road 7 is quite a dangerous road. The probability a driver has an accident is

0.4, a breakdown is 0.5, and neither an accident nor breakdown is 0.2. Determine:

(a) the probability that the driver has a breakdown and not an accident; (b) the

conditional probability that the driver has an accident, given that there is no

breakdown.

1.51. Professor Rensselaer’s theory of classroom instruction is that 25% of the students in

her class do not listen to her lecture, 15% of the students do not read what she writes

(on the blackboard) during lecture, and 20% of the students, read what she writes

and do not listen to her lecture. (a) Determine the percentage of students that have

no idea what is going on in lecture. (b) Determine the probability that the student

reads what is written, given the student either reads what is written or listens to the

lecture.

1.52. Fargo Polytechnic Institute (FPI) plays ten football games during a season. Let A be

the event that FPI scores at least as many points as the other team, B the event that

FPI wins, C the event the two teams tie, and D the event that FPI loses. Furthermore,

P (A) = 7/10 and P (B|Dc ) = 6/7. Determine (a) P (B), (b) P (C), (c) P (B|C), (d) the

probability FPI wins three games and loses four games, (e) the probability FPI wins at

least eight games.

1.53. A club has six members, three are men and three are women. A committee of three

members is to be selected. Determine (a) the probability that any particular member is

chosen, (b) the probability that at least one woman is chosen, (c) the probability that a

particular man and woman are not chosen together.

1.54. Flip a biased coin to determine which of two urns to select from. Urn A contains

two white and two black balls. Urn B contains four white and one black balls. If

the outcome of the coin toss is a head, select from urn A, otherwise, select from

urn B. The experiment continues by drawing balls from the selected urn until a

black ball is picked, at which time the game is concluded. After playing this game

many times, it is observed that the game is concluded in exactly two draws from

the urn with a probability of 38/150. Determine (a) the probability of selecting

from urn A; (b) the probability of selecting from urn A, given two white balls are

selected.
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1.55. The waveform f (t) is uniformly sampled every 0.1 s from 0 ≤ t ≤ 2 s, where

f (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 t ≤ 0

t 0 < t ≤ 1

e−t+1 1 < t ≤ 2

0 2 < t.

Four events are defined as: A = { f (t) ≤ 0.75}, B = {0 ≤ t ≤ 1}, C = {1 < t ≤ 2},
and D = {0.5 ≤ t ≤ 1.5}.
Find: (a) P (A|B), (b) P (A|C), (c) P (A|D), (d) P (D|A).

1.56. Two signals are uniformly sampled every 0.1s from 0 to 4s as follows. A biased coin

(where the probability of heads appearing equals 0.35) is tossed to determine the wave-

form to be sampled: sample f1(t) if a head appears, otherwise, sample f2(t). The two

signals are

f1(t) =

⎧⎪⎨⎪⎩
t 0 ≤ t ≤ 1

1 1 < t ≤ 3

t − 2 3 < t ≤ 4

and

f2(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 0 ≤ t ≤ 1

−t + 2 1 < t ≤ 2

t − 2 2 < t ≤ 3

1 3 < t ≤ 4.

Evaluate the probability that: (a) the sample is less than or equal to 1/2; (b) the sample

is from the interval 0 ≤ t ≤ 1 of f1(t), given the sample is less than or equal to 1/2.

1.57. Three boxes contain electronic components as listed:

Box 1: 3 capacitors, 3 diodes, 2 resistors;

Box 2: 1 capacitor, 5 diodes;

Box 3: 6 capacitors, 2 diodes, 2 resistors.

A box is chosen at random, then a component is selected at random from the box.

(a) Draw a probability tree for the experiment. (b) What is the probability that the

component selected is a diode? (c) The component selected was a capacitor. What is

the probability that it came from Box 1?
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1.58. The Biomedical Engineering department at FPI has the following numbers of students

in each class. Also shown are the percentages of each class which have chosen the

Biomechanics track, Bioinstrumentation track, or no track at all.

CLASS NUMBER OF STUDENTS OPTION PERCENT

Freshmen 150 Bioinstrumentation 10%

Biomechanics 20%

None 70%

Sophomore 160 Bioinstrumentation 15%

Biomechanics 15%

None 70%

Junior 200 Bioinstrumentation 35%

Biomechanics 45%

None 20%

Senior 190 Bioinstrumentation 30%

Biomechanics 30%

None 40%

A student is chosen at random from the department. (a) Draw a probability tree for this

experiment. (b) What is the probability that the student chosen is in the Biomechanics

track? (c) Suppose the student chosen was in the Bioinstrumentation track. What is

the probability that the student is a junior?

1.59. A change purse contains three biased coins. A coin is selected at random and tossed.

The probability of a head occurring, given coin i is selected is P (H|Ci ) = 0.7, 0.45,

and 0.3, respectively, for i = 1, 2, 3. (a) Determine the probability that a head was

tossed. (b) Determine the probability that coin three was tossed, given a tail occurred.

(c) Suppose a fourth coin is placed in the change purse. After many trials of selecting

a coin and then tossing, it is observed that the probability of a head occurring is 0.5.

Determine the probability of a head for the fourth coin.

1.60. One of the passive elements in the circuit shown in Fig. 1.18 is chosen at random.

The voltage across the selected element is uniformly sampled every 0.2 s from 0 to

4 s. Determine the probability that: (a) voltage ≥1.5, given it is recorded across C1; (b)

voltage ≥1.5, given 0 ≤ t ≤ 0.5; (c) voltage ≥1.5; (d) voltage is recorded across C1,

given that voltage ≥1.5.

1.61. The reliability of some medical diagnosis procedures may not be as good as sometimes

indicated. Consider the following problem. A certain test for heart disease is said to
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FIGURE 1.18: Circuit for Problem 1.60

be 90% accurate. This can be stated as follows. Let A = {heart disease diagnosed}
and H = {a person has heart disease}. The 90% accuracy is then P (A|H) = 0.9 and

P (Ac |Hc ) = 0.9. It is also known by experimental data gathering that P (H) = 0.01.

Find the probability of a person having heart disease, given that heart disease is

diagnosed.

1.62. An experiment involves flipping a fair coin three times. Define the events A = {all

heads or all tails}, B = {at least two heads}, and C = {at most two heads result}.

Draw a probability tree for this experiment. Are events (a) A and B independent, (b)

A and C independent, (c) B and C independent?

1.63. Consider events A and A with P (A) = 0.45 and P (A ∪ B) = 0.8. Determine: (a) the

value of P (B) if A and B are independent (b) the value of P (B) if A and B are mutually

exclusive (c) if a value of P (B) can be chosen if events A and B are independent and

mutually exclusive.

1.64. At least one child in a family having two children is a boy. What is the probability that

both children are boys? State your assumptions.

1.65. In the circuit of Fig. 1.19, switches operate independently of one another with each

switch having a probability of being closed equal to 0.3. Determine the probability that

at any time there is at least (a) one closed path between A and B; (b) one closed path

between A and B, given two switches are open.

A

1 2

3 4

B

FIGURE 1.19: Circuit for Problem 1.65
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1.66. In the circuit of Fig. 1.20, switches operate independently of one another with each

switch having a probability of being closed equal to p. Let C , denote the event that

switch i is closed, and let C denote the event that there is a closed path from A to B.

Find (a) P (C |C5), (b) P (C |Cc
5), and (c) P (C)

1.67. In a ternary digital communication system, the source puts out a symbol (i.e., 0, 1,

or 2) every T seconds which is transmitted over a noisy channel to the receiver. The

channel introduces errors in which occasionally the symbol received is not the symbol

transmitted. Let Si denote that the symbol i is sent by the source and Ri denote that

the receiver observes symbol i . The following probabilities are given:

i P(Si) P(R0|Si) P(R1|Si)

0 0.6 0.9 0.05

1 0.3 0.049 0.95

2 0.1 0.1 0.1

1.68. William Smith is a varsity wrestler on his high school team. Without exception, if he

does not pin his opponent with his trick move, he loses the match on points. William’s

trick move also prevents him from ever getting pinned. The probability that William

pins his opponent during the first period is 4/10; during the second period is 3/10,

given he did not pin his opponent in the first period; and during the third period is

2/10, given he did not pin his opponent in the previous periods. Assume the match is

at most three periods. (a) Determine the probability that he pins his opponent during

the second period. (b) Determine the probability that he wins the match. (c) Given he

won the match, what is the probability he pinned his opponent in the second period.

(d) Determine the probability that he wins at least one of his first three matches.

1.69. Doctor Watson has determined that the number of pipes Sherlock Holmes smokes

before commencing on a case determines the number of days spent solving that case.

Dr. Watson’s method is far from certain since Holmes enjoys his pipe enormously.

A

1 2

3 4

5 B

FIGURE 1.20: Circuit for Problem 1.66
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However, the number of pipes smoked (never more than three) is always the maximum

number of days spent on the case. Being a man of science, Dr. Watson has utilized

probability theory to help him describe their cases as follows. With Holmes’ reputation,

the probability of a three-pipe case is twice as likely as a two- or a one-pipe case. If

Holmes smokes N pipes, then the conditional probability he will work D days is given

by P (D |N ) = 1/N, 1 ≤ D ≤ N. Now, a successful end to the case is never assured

unless Holmes spends the maximum number of days working on the case (i.e., N = D

days), otherwise, the conditional probability of success is 2/(2N − D). (a) Determine

the probability of a successful end to the case. (b) Given Holmes worked fewer days on

the case than the number of pipes smoked, determine the probability of a successful end

to the case. (c) Holmes completed the case successfully. Determine the probability he

smoked two pipes before starting the case. (d) Determine the probability that Holmes

works the minimum number of days on a case. (e) Suppose you knew that Holmes

was successful. What is the probability of him working the minimum number of days

on a case? (f ) Should Watson advise Holmes never to stop until he has worked the

maximum number of days on a case?

1.70. Consider Problem 1.69 statement. At the conclusion of any case, Holmes believes that

he has been successful or else he would not have prematurely stopped the case. It is only

after a period of time that he discovers he has been unsuccessful. He then reopens the

case and proceeds exactly as before to solve the case. (a) What is the probability that

he will reopen a case? (b) What is the probability that he is successful, given he has

reopened all unsuccessful cases once? (c) Given that he has reopened a case, determine

the probability that it was originally a three pipe case.

1.71. If trouble has a name, it must be baby Leroy. Professor Rensselaer is baby-sitting Leroy

for the Smith family and while she is grocery shopping, Leroy disappears. Realizing

the gravity of the situation, Ms. Rensselaer assigns these probabilities to determine her

course of action during each hour of the search (she does not want any help because

she feels awfully foolish losing that child). Leroy is either in the store with a probability

of 0.65 or outside the store with a probability of 0.35. The probability she finds him

while searching in the store, given Leroy is in the store is 0.3. The probability she

finds him while searching outside the store, given Leroy is outside, is 0.45. Assume

that Leroy will stay in one location until he is found for all of the following questions.

(a) Where should Professor Rensselaer look first to have the best chances of finding

Leroy during the first hour of the search? (b) Given Professor Rensselaer looked in the

store the first hour and did not find him, what is the probability that Leroy is in

the store? (c) Determine the probability that Professor Rensselaer looked outside for
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the first hour and did not find him and looked outside for the second hour and found

him. (d) Suppose there is an equal chance Professor Rensselaer searches in or out of the

store. Determine the probability she finds Leroy before the end of the second hour of

the search. (e) Suppose there is an equal chance Professor Rensselaer searches in or out

of the store and that she finds Leroy during the first hour of the search. What is the

probability Leroy remained in the store?
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C H A P T E R 2

Random Variables

In many applications of probability theory, the experimental outcome space can be chosen to

be a set of real numbers; for example, the outcome space for the toss of a single die can be

S = {1, 2, 3, 4, 5, 6} just as well as the more abstract S = {ζ1, ζ2, . . . , ζ6}, where ζi represents

the outcome that i dots appear on the top face of the die. In virtually all applications, a suitable

mapping can be found from the abstract outcome space to the set of real numbers. Once this

mapping is performed, all computations and analyses can be applied to the resulting real numbers

instead of to the original abstract outcome space. This mapping is called a random variable, and

enables us to develop a uniform collection of analytical tools which can be applied to any specific

problem. Furthermore, this mapping enables us to deal with real numbers instead of abstract

entities.

2.1 MAPPING
A random variable x(·) is a mapping from the outcome space S to the extended real number

line: −∞ ≤ x(ζ ) ≤ +∞, for all ζ ∈ S. This mapping is illustrated in Fig. 2.1. We will often

express such a mapping as x : S �→R∗, where R∗ = R ∪ {+∞, −∞} is the set of extended real

numbers. The notation f : A �→B can be read as “ f is a function mapping elements in A to

elements in B.” The reader is undoubtedly familiar with real valued functions of real variables,

e.g., sin : R �→ [−1, 1]. The mapping performed by a random variable (RV) is a bit different,

in that the domain S is (in general) a set of abstract elements. It is also important to note the

distinction between a probability measure function (with argument a set) and a random variable

which has an element of a set as an argument.

For many experiments, such as the measurement of a voltage or current, the observed

phenomenon is inherently a real number; in others, such as drawing a card or an item from

inventory, the observed entity is abstract. From another perspective, in some instances the

association of a number to an abstract experimental outcome is more natural than in others.

One can, for example, number each of the cards in a deck. The mapping performed by a

random variable enables us to apply the mathematics of real numbers to aid in problem solving.

In many applications, the problem solver can choose a mapping that simplifies the problem
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S
−∞ x( )ζ

x( ) .

ζ +∞

FIGURE 2.1: A random variable x(·) maps each outcome in S to an extended real number

solution. Recall that with virtually any application of probability theory, probabilities need to be

computed for events comprised of elements of the experimental outcome space. The mapping

may be one-to-one, so that to each value of the RV x there corresponds one and only one ζ ∈ S,

and thus knowledge of the value of the random variable determines uniquely the experimental

outcome ζ . In many cases, the mapping performed by the RV x is a many-to-one mapping:

for each value of the RV there may correspond many experimental outcomes. In addition, more

than one RV may be defined on the same outcome space.

An arbitrary mapping from the outcome space S to the set of extended real numbers R∗

is not necessarily a bona fide RV—some additional restrictions are needed. In this section, we

focus on properties of a general mapping from S toR∗.

Example 2.1.1. Consider the card–drawing experiment. Define the mapping

x(ζ ) = 1, 2, . . . , 13,

if the card drawn isζ = 2, 3, 4, . . . , 10, Jack, Queen, King, Ace, respectively. Define the mapping

y(ζ ) = 1, 2, 3, 4 if the suit of the card drawn is Clubs, Hearts, Spades, Diamonds, respectively. Note

that ζ , the experimental outcome, is the card drawn so that if ζ = King of Hearts then x(ζ ) = 12,

and y(ζ ) = 2.

(a) Define the mapping z(ζ ) = x(ζ ) + (y(ζ ) − 1) × 13. Determine the possible outcomes of the

card drawing if z(ζ ) is known to lie in the interval [25, 28].

(b) Define the mapping w(ζ ) = x(ζ ) + y(ζ ), and suppose that the value of w is 7. Determine

the possible outcomes that occurred.

Solution

(a) Since x ∈ {1, 2, . . . , 13}, we know that if y(ζ ) = 1, then z(ζ ) ∈ {1, 2, . . . , 13}; if

y(ζ ) = 2, then z(ζ ) ∈ {14, 15, . . . , 26}, etc. Since we know that 25 ≤ z < 28 and z is an

integer, we know that z(ζ ) ∈ {25, 26, 27}. Consequently, either y = 2 and x ∈ {12, 13},
or y = 3 and x = 1. Thus, the possible outcomes are

ζ ∈ {King of Hearts, Ace of Hearts, 2 of Spades}.
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Note that the mapping performed by z is a one-to-one mapping.

(b) Since y can only take on four possible values, we simply consider all possibilities. If

y = 1, then x = w − y = 7 − 1 = 6; if y = 2, then x = 5; if y = 3, then x = 4; if

y = 4, then x = 3. Hence, the possible outcomes are

ζ ∈ {7 of Clubs, 6 of Hearts, 5 of Spades, 4 of Diamonds}.

This is an example of a many-to-one mapping. �

Events on a probability space (S,F, P ) are sets of outcomes in S. We are concerned with

the images of these events as a result of the mapping performed by a RV x. We use the notation

x(A) = {x(ζ ) : ζ ∈ A} (2.1)

to denote the image of the event A ∈ F . Similarly, the inverse image of a set of real numbers

B is denoted by

x−1(B) = {ζ ∈ S : x(ζ ) ∈ B}. (2.2)

It is of interest to note that the set function x−1(B) defined above always exists, whereas

the point function x−1(b) may fail to exist for some real values of b.

Example 2.1.2. A fruit bowl contains one gallon of cold water, 10 apples, 6 oranges, and 15 bananas.

Baby Leroy (our experimenter for today) dips his hand in the bowl and extracts one item of fruit and

a quantity of water. The RV x is defined as follows:

x(ζ ) = i(ζ ) + w(ζ ),

where i(ζ ) = 1, 2, or 3, if the item of fruit is an apple, orange, or banana, respectively, and w(ζ ) is

the amount of water in ounces. Assume that baby Leroy’s hand, together with the fruit, holds no more

than 1.5 ounces of water. For each of the following sets, find A = x−1(B) :

(a) B = {1}
(b) B = {1.2, 3.2}
(c) B = [2.1, 2.9) ∪ {1.1}.

Solution

(a) A = {an apple with no water}
(b) A = {an apple with 0.2 Oz. water, an orange with 1.2 Oz. water, a banana with 0.2 Oz.

water}
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(c) A = {an apple with 1.1–1.5 Oz. water, an apple with 0.1 Oz. water, an orange with

0.1–0.9 Oz. water} �

Example 2.1.3. Let x(t) = sin(t). Find (a) x−1({1}), and (b) x−1({2}).

Solution

(a) We recall that sin
(

π
2

) = 1 and that sin(t) is periodic in t with period 2π . Consequently,

x−1({1}) =
{

t = k2π + π

2
: k = 0, ±1, ±2, . . .

}
.

(b) Since −1 ≤ sin(t) ≤ 1 for all real values of t, we conclude that x−1(2) does not exist,

so that x−1({2}) = ∅. �

The following theorems establish properties of a general mapping from elements in S

to R∗. The mapping g : S �→R∗ is considered to be defined as a point function. Properties

considered below concern the images and inverse images of sets under the mapping performed

by g . Because of our interest in random variables, we take the range space to be R∗; however,

the properties remain true with an arbitrary range space. On the first reading, the remainder of

this section may be skipped—it is used only for the proof of Theorem 2.1.1.

Theorem 2.1.1. Let A1, A2, . . . be subsets of S and let g : S �→R∗. Then

g

(⋃
i

Ai

)
=

⋃
i

g (Ai ) (2.3)

and

g

(⋂
i

Ai

)
⊂

⋂
i

g (Ai ). (2.4)

Proof. Let

g1 ∈ g

(⋃
i

Ai

)
Then there exists a ζ1 ∈ Ai1

for at least one i1 such that g (ζ1) = g1; hence

g1 ∈
⋃

i

g (Ai ),

so that

g

(⋃
i

Ai

)
⊂

⋃
i

g (Ai ).
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Now let

g1 ∈
⋃

i

g (Ai ).

Then g1 ∈ g (Ai1
) for at least one i1, so that there exists a ζ1 ∈ Ai1

with g (ζ1) = g1; hence

g1 ∈ g

(⋃
i

Ai

)
,

so that ⋃
i

g (Ai ) ⊂ g

(⋃
i

Ai

)
,

and (2.3) is satisfied.

Let

g1 ∈ g

(⋂
i

Ai

)
.

Then there exists a ζ1 ∈ Ai with g1 = g (ζ1) ∈ g (Ai ) for every i , yielding (2.4). �

Example 2.1.4. Give an example where (2.4) is not an equality.

Solution. Let S = R∗, g (ζ ) = u(ζ ), A1 = [1, 2], and A2 = [3, 4]. Then g (A1 ∩ A2) =
g (∅) = ∅ and g (A1) ∩ g (A2) = {1}. �

Theorem 2.1.2. Let A ⊂ S, B ⊂ R∗, Bi ⊂ R∗, i = 1, 2, . . . , and let g : S �→R∗. Then

g−1(Bc ) = (g−1(B))c , (2.5)

g−1

(⋃
i

Bi

)
=

⋃
i

g−1(Bi ), (2.6)

g−1

(⋂
i

Bi

)
=

⋂
i

g−1(Bi ), (2.7)

and

g (g−1(B) ∩ A) = B ∩ g (A). (2.8)

If B ⊂ g (S) then

g (g−1(B)) = B. (2.9)

If A ⊂ S then

A ⊂ g−1(g (A)). (2.10)
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Proof. We have

g−1(Bc ) = {ζ : g (ζ ) /∈ B} = {ζ : g (ζ ) ∈ B}c = (g−1(B))c ,

yielding (2.5).

Equation (2.6) follows from{
ζ : g (ζ ) ∈

⋃
i

Bi

}
=

⋃
i

{ζ : g (ζ ) ∈ Bi}.

Let

B =
⋃

i

Bc
i .

Then

Bc =
⋂

i

Bi .

Using (2.5) and (2.6) we obtain

g−1(Bc ) = (g−1(B))c =
(⋃

i

g−1(Bc
i )

)c

=
⋂

i

g−1(Bi ),

so that (2.7) is satisfied.

We obtain

g (g−1(B) ∩ A) = {g (ζ ) : ζ ∈ g−1(B) ∩ A}
= {g (ζ ) : g (ζ ) ∈ B, ζ ∈ A}
= B ∩ g (A),

yielding (2.8).

Letting A = S and B ⊂ g (S) in (2.8) yields (2.9).

Let A ⊂ S. By definition

g−1(g (A)) = {ζ : g (ζ ) ∈ g (A)}.

Clearly, if ζ1 ∈ A then g (ζ1) ∈ g (A) so that ζ1 ∈ g−1(g (A)), and (2.10) is satisfied. �

Example 2.1.5. Find an example for which (2.10) is not an equality.

Solution. Let S = R∗, g (ζ ) = u(ζ ), and A = [0, 2]. Then g (A) = {1} and g−1(g (A)) =
[0, ∞]. �
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Theorem 2.1.3. Let f : S �→ U, g : U �→R∗, and h : S �→R∗, with h(ζ ) = g ( f (ζ )). Then

h−1(B) = f −1(g−1(B)) (2.11)

for any B ⊂ R∗.

Proof. By definition

h−1(B) = {ζ : g ( f (ζ )) ∈ B}
= {ζ : f (ζ ) ∈ g−1(B)}
= f −1(g−1(B)). �

Theorem 2.1.4. Let g : S �→R∗, let B be a nonempty collection of subsets of R∗ and let σ (B) denote

the minimal sigma field containing B. Then

σ (g−1(B)) = g−1(σ (B)). (2.12)

Proof. Since g−1(R∗) = S, (2.5) and (2.6) show that g−1(σ (B)) is a σ -field of subsets of S.

Since g−1(B) ⊂ g−1(σ (B)), we then obtain

σ (g−1(B)) ⊂ g−1(σ (B)).

Consider the collection of subsets of R∗ specified by

ε = {ε : g−1(ε) ∈ σ (g−1(B))}.

Since g−1(R∗) = S, (2.5) and (2.6) reveal that ε is a σ -field of subsets of R∗. Now, since B ⊂ ε

we find σ (B) ⊂ ε so that

g−1(σ (B)) ⊂ g−1(ε) ⊂ σ (g−1(B)). �

Drill Problem 2.1.1. Consider the mapping g : R∗ �→ [−1, 1], with g (ζ ) = sin(2ζ ). Find: (a)

g−1({0}), (b)g−1({−1}), and (c) g−1([0, 1]).

Answers:
⋃∞

k=−∞[2k π
2
, (2k + 1)π

2
],{(

k + 3

4

)
π : k = 0, ±1, ±2, . . .

}
,

{
k
π

2
: k = 0, ±1, ±2, . . .

}
.

Drill Problem 2.1.2. Let g : R∗ �→ [0, 1], with g (ζ ) = ζ (u(ζ ) − u(ζ − 1)). Find g−1((0, 1))

and g−1([0, 1)).

Answers: (0, 1), R∗.
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2.2 MEASURABLE FUNCTIONS
Let (S,F, P ) be a probability space, and let x : S �→R∗. By definition, we may compute the

probability that event A occurs using the probability measure P . In the following sections, we

examine techniques for computing the probability that x takes on a value in a Borel set B. This

probability, denoted as Prob(x(ζ ) ∈ B), is a legitimate event probability only if there is an event

A ∈ F such that the image of A under the mapping x is the Borel set B; i.e., only if B = {x(ζ ) :

ζ ∈ A} for some A ∈ F . If such an event A exists, we then have P (A) = Prob(x(ζ ) ∈ B). In

order that the mapping x : S �→R∗ be a bona fide random variable, we require that such an

event A ∈ F exist for every Borel set B. Such a mapping is known as a measurable function.

Definition 2.2.1. Let (S,F) be a measurable space and let x : S �→R∗. If x−1(B) ∈ F for each

Borel set B of R∗, then we say that x is F-measurable, or simply measurable.

Definition 2.2.2. A real random variable (RV) on the probability space (S,F, P ) is an R∗-

valued measurable function with domain S. A RV is allowed to take on the values ±∞, but only with

probability zero.

Theorem 2.2.1. Let (S,F ) be a measurable space, and let g : S �→R∗. Then g is measurable iff

g−1([−∞, α]) ∈ F, for all α ∈ R∗. (2.13)

Proof. Since [−∞, α] is a Borel set for each value of α, if g is measurable then (2.13) is satisfied.

Let ε = {[−∞, α] : α ∈ R∗} and assume (2.13) is satisfied. Then g−1(ε) ⊂ F . Let B
denote the collection of Borel sets of R∗, and note that

(a, b) = [−∞, a]c ∩
∞⋃

n=1

[
−∞, b − 1

n

]
∈ σ (ε).

Hence B = σ (ε). Applying Theorem 2.1.4, we have

g−1(B) = g−1(σ (ε)) = σ (g−1(ε)) ⊂ F,

so that g is measurable. �

Example 2.2.1. A fair die is tossed once. Let S = {1, 2, 3, 4, 5, 6}, A = {1, 2, 3}, and F =
{∅, S, A, Ac }.

(a) Let x : S �→R∗ be defined by x(ζ ) = ζ . Is x a RV?

(b) Let y : S �→R∗ be defined by

y(ζ ) =
{

5, ζ ∈ A

10, ζ ∈ Ac .

Is y a RV?
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Solution

(a) To apply Theorem 2.2.1, we try to find an interval with inverse image not belonging

to F . Since x−1([−∞, 2]) = {1, 2} �∈ F , x is not a RV. Note that redefining F to be

the collection of all subsets of S would make x a bona fide RV.

(b) We have

y−1([−∞, α]) =

⎧⎪⎨⎪⎩
∅, α < 5

A, 5 ≤ α < 10

S, 10 ≤ α.

Hence, y is a RV. �

The example above suggests that a nonmeasurable function can often be made measurable

by considering a different σ-field. In the sequel, we assume the RVs considered are measurable

functions on the probability space (S,F, P ).

Example 2.2.2. A box contains a collection of resistors, inductors, capacitors, and transistors. One

component is drawn from the box, with

P ({resistor}) = 0.1,

P ({inductor}) = 0.3,

P ({capacitor}) = 0.2,

and
P ({transistor}) = 0.4.

Define the random variable x by x(ζ ) = 5, 0, −1.5, and 2, respectively, for

ζ = resistor, inductor, capacitor, and transistor.

(a) Determine the function

Fx(α) = P ({ζ : x(ζ ) ≤ α})

for all real α. The function Fx(α) is called the cumulative distribution function for the random

variable x, and will prove to be very useful throughout our remaining work in probability

theory.

(b) Use Fx(α) to find: (i) P ({resistor}), (ii) P ({inductor, capacitor, transistor}), and (iii)

P ({inductor, transistor}).



P1: IML

MOBK035-02 MOBK035-Enderle.cls October 5, 2006 18:27

82 BASIC PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

α−1 30 1 2
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xF ( )
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1

−2 4 5

α

FIGURE 2.2: Cumulative distribution function for Example 2.2.2

Solution

(a) From the given information, we easily find

Fx(α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if α < −1.5

0.2, if − 1.5 ≤ α < 0

0.5, if 0 ≤ α < 2

0.9, if 2 ≤ α < 5

1, if 5 ≤ α.

The function Fx(α) is illustrated in Fig. 2.2.

(b)

(i) Defining Fx(α−) to denote the value of Fx just to the left of α, we have

P ({resistor}) = P ({ζ : x(ζ ) = 5}) = Fx(5) − Fx(5−) = 0.1.

(ii) Using the correspondence between the values of the random variable x and the

selected components, we obtain

P ({inductor, capacitor, transistor}) = P ({ζ : x(ζ ) ∈ {0, −1.5, 2}})
= P ({ζ : −1.5 ≤ x(ζ ) ≤ 2})
= Fx(2) − Fx(−1.5−)

= 0.9.

(iii) We have

P ({inductor, transistor}) = P ({ζ : x(ζ ) ∈ {0, 2}})
= Fx(0) − Fx(0−) + Fx(2) − Fx(2−)

= 0.5 − 0.2 + 0.9 − 0.5 = 0.7. �
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The example above introduces the important concept of a cumulative distribution function

and how it can be used to compute event probabilities. This concept is expanded in the following

section.

Drill Problem 2.2.1. An urn contains seven red marbles and three white marbles. Two marbles

are drawn from the urn one after the other without replacement. Let the random variables x and

y denote the total number of red and (respectively) white marbles selected. Find: (a) P (ζ : x(ζ ) =
0), (b)P (ζ : x(ζ ) = y(ζ )), (c )x−1([0.5, 5)), and (d) the smallest sigma-field that can be used so that

z(ζ ) = x(ζ ) + y(ζ ) is a random variable.

Answers: {∅, S}, 1/15, {R1 R2, R1W2, W1 R2}, 7/15.

Drill Problem 2.2.2. Consider the experiment of tossing a fair tetrahedral die (with faces labeled

0, 1, 2, 3) twice. Let x be a random variable denoting the sum of the numbers tossed. Determine the

probability that x takes the values (a) 0, (b) 2, (c) 3, and (d) 5.

Answers: 2/16, 1/16, 4/16, 3/16.

2.3 CUMULATIVE DISTRIBUTION FUNCTION
By definition, the probability that a RV x (defined on the probability space (S,F, P )) takes on a

value in any particular Borel set B can be determined from P (x−1(B)). In this section, we develop

the concept of a cumulative distribution function (CDF) for the RV x which enables us to com-

pute the desired probabilities directly without explicitly making use of the probability measure P .

Definition 2.3.1. Let x be a RV on the probability space (S,F, P ). Define Fx : R∗ �→ [0, 1] by

Fx(α) = P (x−1([−∞, α])) = P ({ζ : −∞ ≤ x(ζ ) ≤ α}).
The function Fx is the cumulative distribution function (CDF ) for the RV x.

Note that the RV x and the probability measure P determine the CDF Fx . Furthermore,

x−1([−∞, α]) = x−1({−∞}) ∪ x−1((−∞, α]),

and that P (x−1({−∞})) = 0, so that

Fx(α) = P (x−1([−∞, α])) = P ({ζ : −∞ < x(ζ ) ≤ α}).
Using the relative frequency approach to probability assignment, a CDF can be estimated as

follows. Suppose that a RV x takes on the values x1, x2, . . . , xn in n trials of an experiment.

The function

F̂x (α) = 1

n

n∑
i=1

u(a − xi ) (2.14)
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is an estimate of the CDF Fx(α), where u(·) is the unit step function. This estimate F̂x (α) will

be referred to as the empirical distribution function for the RV x. Let nα denote the number

of times the RV x is observed to be less than or equal to α in n trials of the experiment. Note

that F̂x (α) = nα

n
.

The empirical distribution can be applied to the “random sampling” of a waveform w(·).
Let S = {0, 1, . . . , N − 1}, and P (ζ = i) = 1/N for i ∈ S. Let the RV x(ζ ) = w(a + ζ T) for

each ζ ∈ S, where T > 0 is the sampling period. The CDF for x is

Fx(α) = 1

N

N−1∑
k=0

u(α − w(a + kT )).

Definition 2.3.2. The function f : R∗ �→R is right-continuous at x if f (x+) = f (x), where

f (x+) = lim
h→0

f (x + h), (2.15)

and left-continuous at x if f (x−) = f (x), where

f (x−) = lim
h→0

f (x − h) = f (x). (2.16)

The limits are taken through positive values of h. We say that f is continuous at x if f (x+) =
f (x−) = f (x) and simply continuous if f is continuous for all real x.

Theorem 2.3.1 (Properties of CDF). Let x be a RV on the probability space (S,F, P ), and let

Fx be the CDF for x. Then

(i) Fx(a) ≤ Fx(b) for all a < b; i.e ., Fx is monotone nondecreasing;

(ii) Fx is right-continuous;

(iii) Fx(−∞) = 0;

(iv) Fx(∞) = 1;

(v) P (x−1((a, b])) = Fx(b) − Fx(a) for all a < b;

and

(vi) P (x−1({a})) = Fx(a) − Fx(a−).

Proof

(i) For all a < b,

Fx(b) = P (x−1((−∞, b]))

= P (x−1((−∞, a]) ∪ x−1((a, b]))

= P (x−1((−∞, a])) + P (x−1((a, b]))

= Fx(a) + P (x−1((a, b]))

≥ Fx(a).
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FIGURE 2.3: CDF for Example 2.3.1

(ii) Let a = α, b = α + h and h > 0. From (i) above,

Fx(α + h) = Fx(α) + P (x−1((α, α + h])).

Since (α, α + h] → ∅ as h → 0, we have x−1((α, α + h]) → ∅ and hence

P (x−1((α, α + h])) → 0 as h → 0.

(iii) and (iv) follow from the definition of a random variable, requiring that P (x−1({±∞})) =
0.

(v) From (i) above, P (x−1((a, b])) = Fx(b) − Fx(a) for all a < b.

(vi) follows from (v) replacing a with a− and b with a . �

Applying the above theorem, the probability that a RV x takes on a value in an arbitrary

Borel set B can be determined directly from the CDF Fx . Consequently, the CDF determines a

probability measure PF on the measurable space (R∗,B), whereB is the Borel field for R∗. If one

is only interested in the RV x, then one need only consider the probability space (R∗,B, PF ).

Any function Fx mapping R∗ to R and satisfying properties (i)–(iv) of Theorem 2.3.1 is a valid

CDF for determining PF on the probability space (R∗,B, PF ).

From now on, we will often shorten the notation for probabilities. For example, the

expressions P ({ζ : ζ ∈ x−1((a, b])}), P (x−1((a, b])), P (a < x(ζ ) ≤ b), and P (a < x ≤ b) are

all equivalent.

Example 2.3.1. The RV y has CDF Fy shown in Fig. 2.3. Find (a) P (y = −2), (b)P (−2 ≤ y <

−1.5), and (c) P (−0.5 < y < 1).

Solution

(a) Since P (y = −2) = P (−2− < y ≤ 2), we find

P (y = −2) = Fy (−2) − Fy (−2−) = 0.5 − 0.25 = 0.25.

(b) Since P (−2 ≤ y < −1.5) = P (−2− < y ≤ −1.5−), we find

P (−2 ≤ y < −1.5) = Fy (−1.5−) − Fy (−2−) = 0.5 − 0.25 = 0.25.
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(c) Since P (−0.5 < y < 1) = P (−0.5 < y ≤ 1−), we obtain

P (−0.5 < y < 1)= Fy (1−) − Fy (−0.5)=0.75−
(

0.5 + 1

4
(0.75 − 0.5)

)
=3/16. �

There are two basic categories of RVs with which we will be concerned: discrete RVs and

continuous RVs. The RV y in the above example is a mixed RV—a RV with both a discrete

part and a continuous part. The discrete part corresponds to the jumps in the CDF and the

continuous part corresponds to the interval (−1, 1) where the CDF is increasing in a continuous

manner. We now define these types of RVs. Note that the CDF has a jump discontinuity at

α if Fx(α) − Fx(α−) �= 0. Furthermore, since a CDF is right-continuous and bounded, the

only kind of discontinuity a CDF may have is a jump discontinuity. Similarly, the number of

discontinuities a CDF may have is countable.

2.3.1 Discrete Random Variables

Discrete random variables take on at most a countable number of values. The resulting CDF is

a jump function. Probabilities for discrete random variables are often easily found with the aid

of the probability mass function—which can be found from the CDF.

Definition 2.3.3. A RV x on (S,F, P ) is a discrete RV if the CDF Fx is a jump function; i.e., iff

there exists a countable set Dx ⊂ R such that

P ({ζ : x(ζ ) ∈ Dx}) = 1. (2.17)

The function

px(α) = P ({ζ : x(ζ ) = α}) = Fx(α) − Fx(α−) (2.18)

is called the probability mass function (PMF) for the discrete RV x. The set of points Dx for which

the PMF is nonzero is called the support set for px .

Theorem 2.3.2. Let x be a discrete RV on the probability space (S,F, P ). Then

Fx(α) =
∑

α′∈Dx∩(−∞,α]

Px(a ′), (2.19)

px(α) ≥ 0 for all real α, ∑
α

Px(α) = 1, (2.20)

and

P ({ζ : x(ζ ) ∈ A}) =
∑
α∈A

Px(a). (2.21)

All summation indices are assumed to belong to the support set Dx .
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FIGURE 2.4: (a) PMF and (b) CDF for Example 2.3.2

Proof. The proof is a straightforward application of the definitions of PMF and CDF. �
Any function px mapping R∗ to R which has support set Dx and satisfies

px(α) ≥ 0 for all real α, (2.22)

px(−∞) = px(+∞) = 0, (2.23)

and ∑
α∈Dx

Px(α) = 1 (2.24)

is a valid PMF.

Example 2.3.2. A fair die is tossed once. The RV x is twice the number of dots appearing on the die

face. Find: (a) the PMF px, (b) the CDF Fx, (c )P (3.5 < x ≤ 8).

Solution

(a) The support set for px is Dx = {2, 4, 6, 8, 10, 12}. The PMF for x is

px(α) =
⎧⎨⎩

1

6
, α ∈ Dx

0, otherwise,

and is shown in Fig. 2.4a.

(b) The CDF is

Fx(α) =
6∑

i=1

1

6
u(α − 2i).

which can be expressed as

Fx(α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, α < 2

k

6
, 2k ≤ α < 2k + 2, k = 1, 2, 3, 4, 5

1, α ≥ 12.

The CDF Fx is shown in Fig. 2.4b.
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(c) We have

P (3.5 < x ≤ 8) =
∑

α∈{4,6,8}
Px(α) = 3

6
= 1

2
. �

The set of points Dx for which a discrete RV has nonzero probability (the support set) may

contain an infinite number of elements. Whenever there are many points in Dx , it is highly

desirable to express the CDF in “closed form.” In many cases, the discrete RVs of interest are

lattice RVs.

Definition 2.3.4. The RV x is a lattice random variable if there exist real constants a and h such

that h > 0 and

∞∑
k=−∞

P (x = kh + a) = 1. (2.25)

The value of h is called a span of the lattice RV.

Two of the most basic integrals we encounter are

a∫
0

xk d x = ak+1

k + 1
, k ≥ 0,

and

b∫
a

eαx d x = eαb − eαa

α
.

The following lemmas provide corresponding basic results for summations which arise with

lattice RV probability calculations.

Lemma 2.3.1. Define

γ
[�]
k =

l−1∏
i=0

(k − i) =

⎧⎪⎨⎪⎩
� terms︷ ︸︸ ︷

k(k − 1) · · · (k − � + 1), � = 1, 2, . . .

1, � ≤ 0.

(2.26)

Then for integer n ≥ 0

n∑
k=0

γ
[�]
k = 1

� + 1
γ [�+1]

n , � = 0, 1, . . . (2.27)
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For integer n ≤ 0

0∑
k=n

γ
[�]
k = − 1

� + 1
γ [�+1]

n , � = 0, 1, . . . (2.28)

Proof. First consider n ≥ 0. Note that γ
[�]
k = 0 for k = 0, 1, . . . , � − 1. For k = �, � +

1, . . . , n we have

γ
[�+1]
k+1 − γ

[�+1]
k =

�∏
i=0

(k + 1 − i) −
�∏

i=0

(k − i)

= (k + 1)
�∏

i=1

(k − (i − 1)) − (k − �)γ
[�]
k

= (k + 1 − k + �)γ
[�]
k = (� + 1)γ

[�]
k .

Summing from k = � to k = n we obtain

(� + 1)
n∑

k=�

γ
[�]
k =

n∑
k=�

(
γ

[�+1]
k+1 − γ

[�+1]
k

)
= γ

[�+1]
n+1 − γ

[�+1]
� = γ

[�+1]
n+1 ,

from which the desired result (2.27) follows.

Now consider n ≤ 0. For integer k ≤ −1

γ
[�+1]
k − γ

[�+1]
k+1 = (k − � − k − 1)γ

[�]
k = −(� + 1)γ

[�]
k .

Summing from k = n to k = 0 we obtain

−(� + 1)
0∑

k=n

γ
[�]
k =

0∑
k=n

γ
[�+1]
k −

0∑
m=n+1

γ
[�+1]
k = γ [�+1]

n ,

where we have used the fact that γ
[�+1]
0 = 0. This establishes (2.28). �

In particular, the above lemma yields

n∑
k=0

1 =
n∑

k=0

γ
[0]
k = γ

[1]
n+1 = n + 1, (2.29)

n∑
k=0

k =
n∑

k=0

γ
[1]
k = γ

[2]
n+1

2
= (n + 1)n

2
, (2.30)

and

n∑
k=0

k2 =
n∑

k=0

k(k + 1) +
n∑

k=0

k = γ
[3]
n+1

3
+ (n + 1)n

2
= (n + 1)n(2n + 1)

6
. (2.31)
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It is of interest to note that

n∑
k=0

k = 1 + 2 + · · · + n

= n + (n − 1) + · · · + 1.

Adding the right-hand sides of the two expressions above and dividing by two yields

n∑
k=0

k = n(n + 1)

2
.

Gauss discovered this result at a very tender age.

Example 2.3.3. The discrete RV x has PMF

px(α) =
{

aα, α = 1, 2, . . . , 10

0, otherwise.

Find: (a) the constant a, (b) the CDF Fx, (c )P (1 < x).

Solution

(a) We have

1 =
∑

α

px(α) = α

10∑
α=1

α = a
11 · 10

2
= 55a,

so that a = 1/55.

(b) We find

Fx(α) =
∑
α′≤α

px(α′) =

⎧⎪⎪⎨⎪⎪⎩
0, α < 1
a(k + 1)k

2
, k ≤ α < k + 1, K = 1, 2, . . . , 9

1, 10 ≤ α.

(c) We have

P (1 < x) = 1 − P (x ≤ 1) = 1 − Fx(1) = 1 − a = 54

55
. �

Another frequently useful result is the expression for the sum of a geometric series.

Lemma 2.3.2 (Sum of Geometric Series). Define

Sm,n(w) =
n∑

k=m

wk,
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where w is any complex number. Then

Sm,n(w) =

⎧⎪⎪⎨⎪⎪⎩
wm − wn+1

1 − w
, if n ≥ m and w �= 1

n − m + 1, if n ≥ m and w = 1

0, if n < m.

Proof. Assume n ≥ m. We have

Sm,n(w) = wm + wm+1 + · · · + wn,

and

wSm,n(w) = wm+1 + wm+2 + · · · + wn + wn+1,

so that

(1 − w)Sm,n(w) = wm − wn+1,

from which the desired result follows. �

Example 2.3.4. The discrete RV x has PMF

px(α) =
{

a(0.9)α, α = 2, 3, 4, . . .

0, otherwise.

Find the CDF Fx(α) in closed form, and find the constant a .

Solution. Using the sum of a geometric series,

Fx(k) = a
k∑

i=2

(0.9)i = α
(0.9)2 − (0.9k+1)

1 − 0.9
, k = 2, 3, 4, . . . ,

so that

Fx(α) =
{

0, α < 2

8.1a(1 − (0.9)k−1), k ≤ α < k + 1, k = 2, 3, . . . .

Since Fx(∞) = 1, we find a = 10/81. �

2.3.2 Continuous Random Variables

Continuous random variables take on a continuum of values. The resulting CDF is a continuous

function. Probabilities for continuous random variables are often easily found with the aid of

the probability density function—which can be found from the CDF.
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Definition 2.3.5. A RV x defined on (S,F, P ) is continuous if the CDF Fx is absolutely continuous.

To avoid technicalities, we simply note that if Fx is absolutely continuous then Fx is continuous

everywhere and Fx is differentiable except perhaps at isolated points. Consequently, there exists a

function fx satisfying

Fx(α) =
α∫

−∞
fx(α′) dα′. (2.32)

The function fx is called the probability density function (PDF) for the continuous RV x. The set of

points for which the PDF is nonzero is called the support set for fx .

Theorem 2.3.3. Let x be a continuous RV. The PDF fx satisfies

fx(α) = d Fx(α)

dα
≥ 0 (2.33)

(except perhaps at isolated points),

∞∫
−∞

fx(α) dα = 1, (2.34)

and ( for any Borel set A)

P ({ζ : x(ζ ) ∈ A}) =
∫
A

fx(α′)dα. (2.35)

Proof. We have

d Fx(α)

dα
= lim

h←0

Fx(α) − Fx(α − h)

h

= lim
h←0

1

h

α∫
α−h

fx(α′)dα′

= fx(α) lim
h←0

1

h

α∫
α−h

dα′

= fx(α).

The above is a special case of Leibnitz’ rule.

The PDF fx is nonnegative since the CDF Fx is monotone nondecreasing.

Since Fx(+∞) = 1, we have

1 =
∞∫

−∞
fx(α′) dα′.
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From the properties of a CDF,

P (a < x ≤ b) =
b∫

a

fx(α′) dα′;

This is easily extended to any Borel set to yield (2.35). �

We consider fx(α) to be the left-hand derivative of the CDF:

fx(α) = lim
h→0

Fx(α) − Fx(α − h)

h
, (2.36)

where the limit is through positive values of h . For a continuous RV, the right- and left-hand

derivatives are equal almost everywhere; however, a treatment of discrete and mixed RVs using

a PDF containing Dirac delta functions can be developed. Such a treatment is offered in the

following section, with the Dirac delta function

δ(α) = lim
h→0

u(α) − u(α − h)

h
, (2.37)

where the limit requires a special interpretation.

Example 2.3.5. The PDF for the RV x is

fx(α) =
{

βα2, −1 < α < 2

0, otherwise.

Find β so that fx is a PDF, and find the CDF Fx .

Solution. We require

1 =
∞∫

−∞
fx(α) dα = β

2∫
−1

α2 dα = β

3
(8 + 1) = 3β

so that β = 1/3. We note that fx(α) ≥ 0, as required. We obtain the CDF using

Fx(α) =
α∫

−∞
fx(α′) dα′ .

Since fx(α′) = 0 for α′ < −1 we obtain Fx(α) = 0 for α < −1. For −1 ≤ α < 2 we obtain

Fx(α) =
α∫

−1

1

3
α′2 dα′ = 1

9
(α3 + 1).
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FIGURE 2.5: PDF and CDF for Example 2.3.5

Finally, since fx(α′) = 0 for α′ > 2 we have Fx(α) = 1 for α ≥ 2. Note that fx(−1) and fx(2)

could be defined to be any real numbers without affecting the result. In fact, the PDF could be

redefined at any discrete set of points without affecting the result.

The PDF and CDF for this example are illustrated in Fig. 2.5. It is extremely important

to be able to visualize the relationship between the PDF and CDF. �

Example 2.3.6. The RV x has PDF fx(α) = 5e−5αu(α). Find P (−1 < x < 2).

Solution. We have

P (−1 < x < 2) =
2∫

−1

fx(α) dα =
2∫

0

5e−5α dα = −e−5α
∣∣∣2

0
= 1 − e−10.

2.3.3 Mixed Random Variables

Mixed random variables are neither discrete nor continuous. The resulting CDF is piecewise

continuous. Probabilities for mixed random variables can be found in several ways. Splitting the

CDF into the sum of a jump CDF and a continuous CDF and using the corresponding PMF

and PDF is one approach, and is treated in this section.
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Definition 2.3.6. A RV x defined on (S,F, P ) is a mixed RV if it is neither discrete nor continuous.

Theorem 2.3.4 (Lebesgue Decomposition Theorem). A CDF Fmay be expressed as

F(α) = γ FC (α) + (1 − γ )FD(α), (2.38)

where 0 ≤ γ ≤ 1, FC is a continuous CDF, and FD is a discrete CDF.

Proof. Note that if F is continuous then γ = 1 and FC = F . Similarly, if F is discrete then

γ = 0 and FD = F .

Assume F is neither continuous nor discrete. Define

q (α) = F(α) − F(α−).

Then q (α) ≥ 0, and q (α) �= 0 only at isolated points, say α ∈ D. Let

(1 − γ )FD(α) =
∑
α′≤α

q (α′)

and

1 − γ =
∑
α′∈D

q (α′).

Then FD is a monotone nondecreasing, right-continuous jump function, with FD(−∞) =
0 and FD(+∞) = 1; i.e., FD is a discrete CDF. Now, let

FC (α) = F(α) − (1 − γ )FD(α)

γ
.

Then FC (−∞) = 0, FC (+∞) = 1, and FC is right-continuous since both F and FD are

right-continuous. Also,

FC (α) − FC (α−) = q (α) − q (α)

γ
= 0.

Consequently, FC is a continuous CDF. �

Although the above decomposition theorem is useful, there is no guarantee that FC is

absolutely continuous and hence that FC is the CDF of a continuous RV. It can be shown

that FC can always be further decomposed into the sum of an absolutely continuous part and

a singular part [4]. We will assume throughout that the singular part is zero, and hence that

FC is the CDF for a continuous RV. All CDFs arising in practical applications satisfy this

assumption. For our purposes then, if γ = 1 the CDF describes a continuous RV and if γ = 0

the CDF describes a discrete RV.
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FIGURE 2.6: Plots for Example 2.3.7

Example 2.3.7. The RV x has CDF

Fx(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, α < −1

1

8
+ 1

4
(α + 1), −1 ≤ α < −1

2
1

4
, −1

2
≤ α < 0

3

8
+ 1

4
α, 0 ≤ α < 1

5

8
+ 3

4
(α − 1), 1 ≤ α <

3

2

1,
3

2
≤ α.

Express Fx as Fx = γ FC + (1 − γ )FD, where FC is a continuous CDF and FD is a discrete CDF.

Solution. Plots for this example are given in Fig. 2.6. Following the notation in the proof of
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FIGURE 2.7: Cumulative distribution function for Drill Problem 2.3.1

the Lebesgue Decomposition Theorem,

q (α) = Fx(α) − Fx(α−) =
⎧⎨⎩

1

8
, α = −1, 0

0, otherwise.

Hence,

(1 − γ )FD(α) =
∑
α′≤α

q (α′)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 α < −1
1

8
, −1 ≤ α < 0

1

4
, 0 ≤ α;

so that 1 − γ = 1/4 and γ = 3/4. Finally, γ FC = Fx − (1 − γ )FD, or

γ FC (α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, α < −1
1

4
(α + 1), −1 ≤ α < −1

2
1

8
, −1

2
≤ α < 0

1

8
+ 1

4
α, 0 ≤ α < 1

3

8
+ 3

4
(α − 1), 1 ≤ α <

3

2
3

4
,

3

2
≤ α. �

Drill Problem 2.3.1. The discrete random variable x has cumulative distribution function Fx shown

in Fig. 2.7. Find (a) px(−1), (b)px(0), (c )P (0 ≤ x ≤ 3), (d )P (0 < x ≤ 2).

Answers: 7/8, 1/8, 0, 1/2.
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Drill Problem 2.3.2. A committee of three members is to be formed from four engineers and three

physicists. Let x be a RV which assigns to every sample point in S a value equal to the number of

engineers on the committee. Determine: (a) px(0), (b)px(1), (c )px(2), and (d) px(3).

Answers: 1/35, 4/35, 12/35, 18/35.

Drill Problem 2.3.3. The waveform w(t) is uniformly sampled every 0.2 s from t = 0 s to t = 4 s,

where

w(t) =
{

2t, 0 ≤ t ≤ 2

4e−2(t−2), 2 < t ≤ 4.

The sampled values are rounded off to the nearest integer and collected in the set S. The RV x(ζ ) = ζ

for all ζ ∈ S. Determine: (a) px(0), (b)px(1), (c )px(2), (d )px(3), (e )px(5).

Answers: 1/3, 5/21, 4/21, 1/7, 0.

Drill Problem 2.3.4. Suppose the RV x has the PMF

px(α) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

8
, α = 0, 2

1

4
, α = 1, 3, 4

0, otherwise.

Find: (a) Fx(−1), (b)Fx(0), (c )Fx(1), (d )Fx(3).

Answers: 3/8, 1/8, 3/4, 0.

Drill Problem 2.3.5. The PDF for the RV x is

fx(α) =
{

β(α + 1), −1 < α < 2

0, otherwise,

where β is a constant. Determine: (a) β, (b)P (x ≤ −1), (c )Fx(0), (d )P (0 ≤ x ≤ 2).

Answers: 0, 1/9, 2/9, 8/9.

Drill Problem 2.3.6. The PDF for the RV x is

fx(α) =
{

β(α1/2 + α−1/2), 0 < α < 1

0, otherwise,

where β is a constant. Determine: (a) β, (b)P (x ≥ 1/2), (c )Fx(1/4), (d )P (x = 1/4).

Answers: 0.406, 3/8, 0, 0.381.
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α−2 2−1 0 1

xF ( )α

1

FIGURE 2.8: Cumulative distribution function for Drill Problem 2.3.8

Drill Problem 2.3.7. The CDF for the RV x is

Fx(α) =

⎧⎪⎨⎪⎩
0, α < −1

3(α − α3/3 + 2/3)/4, −1 ≤ α < 1

1, 1 ≤ α.

Determine: (a) Fx(0), (b)P (x ≥ 1/2), (c ) fx(0), (d ) fx(4/3).

Answers: 5/32, 1/2, 0, 3/4.

Drill Problem 2.3.8. Random variable x has the mixed CDF Fx shown in Fig. 2.8. Find (a)

P (−1 ≤ x < 0.5), (b)P (−2 < x < −1), (c )P (−2 ≤ x < −1), (d )P (x > 1.5).

Answers: 0.1, 0.15, 0.35, 0.3.

2.4 RIEMANN-STIELTJES INTEGRATION
We will have a great interest in evaluating integrals of the form

b∫
a

d F(α) ,

∫
B

d F(α) ,

and

b∫
a

g (α) d F(α) ,
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where F is a CDF, a and b are real numbers, B is a Borel set, and g : R∗ �→R∗. Such integrals

are known as Riemann-Stieltjes integrals. In the following we assume that F is the CDF for

the RV x and that a < b. In the special case that B = (a, b] and g (α) = 1 for all α, then all

the above integrals are the same. We establish below that

P ({ζ : a < x(ζ ) ≤ b}) = F(b) − F(a) =
b∫

a

d F(α) . (2.39)

The Riemann-Stieltjes integral provides a unified framework for treating continuous, discrete,

and mixed RVs—all with one kind of integration. An important alternative is to use a standard

Riemann integral for continuous RVs, a summation for discrete RVs, and a Riemann integral

with an integrand containing Dirac delta functions for mixed RVs.

We begin with a brief review of the standard Riemann integral. Let

a = α0 < α1 < α2 < · · · < αn = b, (2.40)

αi−1 ≤ ξi ≤ αi , i = 1, 2, . . . , n, (2.41)

and

�n = max
1≤i≤n

{αi − αi−1}. (2.42)

The Riemann integral is defined by

b∫
a

h(α) dα = lim
�n→0

n∑
i=1

h(ξi )(αi − αi−1), (2.43)

provided the limit exists and is independent of the choice of {ξi}. Note that n → ∞ as �n →
0. The summation above is called a Riemann sum. We remind the reader that this is the

“usual” integral of calculus and has the interpretation as the area under the curve h between a

and b.

With the same notation as above, the Riemann-Stieltjes integral is defined by

b∫
a

g (α) d F(α) = lim
�n→0

n∑
i=1

g (ξi )(F(αi ) − F(αi−1)), (2.44)

provided the limit exists and is independent of the choice of {ξi}.
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Applying the above definition, we obtain (as promised)

b∫
a

d F(α) = lim
�n→0

((F(α1) − F(α0)) + (F(α2) − F(α1)) + · · · + (F(αn) − F(αn−1)))

= F(b) − F(a).

Suppose F is discrete with jumps at β ∈ {β0, β1, . . . , βN} satisfying

a = β0 < β1 < β2 < · · · < βN ≤ b. (2.45)

Then, provided that g and F have no common points of discontinuity, it is easily shown that

b∫
a

g (α) d F(α) =
N∑

i=1

g (βi )(F(βi ) − F(β−
i )) =

N∑
i−1

g (βi )p(βi ), (2.46)

where p(β) = F(β) − F(β−). Note that a jump in F at a is not included in the sum whereas

a jump at b is included.

Suppose F is absolutely continuous with

f (α) = d F(α)

dα
. (2.47)

Then

b∫
a

g (α) d F(α) =
b∫

a

g (α) f (α) dα . (2.48)

Hence, the Riemann-Stieltjes integral reduces to the usual Riemann integral in this case.

Defining ∫
B

d F(α) = P (x−1(B)), (2.49)

we find that if B = (a, b] then

∫
B

d F(α) =
b∫

a

d F(α). (2.50)

The above summary of Riemann-Stieltjes integration together with the Lebesgue Decom-

position Theorem provides a powerful technique for evaluating the integrals encountered in
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probability theory. With

F(α) = γ FC (α) + (1 − γ )FD(α), (2.51)

fC (α) = d FC (α)

dα
, (2.52)

p(α) = FD(α) − FD(α−), (2.53)

and
Dx = {α : p(α) �= 0}, (2.54)

we obtain ∫ b

a

g (α)d F(α) =
∫ b

a

g (α)γ fc (α)dα +
∑

αε(a,b)∩D

g (α)(1 − γ )p(α). (2.55)

The evaluation of the above Riemann-Stieltjes integral is even further simplified by noting that

(1 − γ )p(α) = F(α) − F(α−) (2.56)

and that

γ fC (α) = d F(α)

dα
, wherever p(α) = 0. (2.57)

Example 2.4.1. The RV x has CDF

Fx(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, α < −3

1

4
, −3 ≤ α < −2

1

4
+ 1

4
(α + 2), −2 ≤ α < −1

1

2
, −1 ≤ α < 0

5

8
+ 3

8
α2, 0 ≤ α < 1

1, 1 ≤ α.

Evaluate
∞∫

−∞
α2 d Fx(α) .

Solution. We have Dx = {−3, 0},

(1 − γ )p(α) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

4
, α = −3

1

8
, α = 0

0, otherwise,
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and

γ fC (α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

4
, −2 < α < −1

3

4
α, 0 < α < 1

0, otherwise.

Consequently,

∞∫
−∞

α2 d Fx(α) = 1

4

−1∫
−2

α2 dα + 3

4

1∫
0

α3 dα + (−3)2 1

4
= 145

48
. �

Example 2.4.2. Let F(α) = 0.5α(u(α) − u(α − 1)) + u(α − 1). Evaluate

I =
∞∫

−∞
α d F(α) .

Solution. We find

I =
1∫

0

1

2
α dα + 1 · 1

2
= 1

4
+ 1

2
= 3

4
. �

The Dirac delta function provides an alternative technique for evaluating the integrals occurring

in the applications of probability theory.

Definition 2.4.7. We say that δ(·) is a Dirac delta function if

∞∫
−∞

g (α)δ(α − α0) dα = g (α0) (2.58)

for each function g (α) which is continuous at α = α0.

For example, let

g (α) =
{

1, |α − α0| < ε

0, otherwise.

Then for all ε > 0, g (α) is continuous at α = α0 and

g (α0) = 1 =
∞∫

−∞
g (α)δ(α − α0) dα =

ε∫
−ε

δ(α′) dα′ .

Consequently, δ(α) has unit area and (virtually) zero width. We conclude that δ(0) = ∞.
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Formally, we may treat the Dirac delta function as the derivative of the unit step function,

δ(α) = du(α)

dα
, (2.59)

since
∞∫

−∞
g (α) du(α − α0) = g (α0). (2.60)

Letting α′ − α0 = α0 − α, we have dα′ = −dα and

∞∫
−∞

g (α)δ(α0 − α) dα = −
−∞∫
∞

g (2α0 − α′)δ(α′ − α0) dα′ = g (α0).

Consequently, we may treat the Dirac delta function as an even function:

δ(−α) = δ(α). (2.61)

Similarly, we can easily show that if g (α) is continuous at α = α0, then we have

g (α)δ(α − α0) = g (α0)δ(α − α0). (2.62)

Example 2.4.3. Evaluate the following integrals:

I1 =
∞∫

−∞
e−α/2δ(α − 2) dα ,

I2 =
0∫

−∞
e−α/2δ(α − 2) dα ,

I3 =
∞∫

−∞
e−|α|δ(2α + 4) dα ,

I4 =
∞∫

−∞

5 tan(2α) + 3α2

cos(5α − 2) + sin(α)
δ(α + 2) dα ,

I5 =
∞∫

−∞
(α − 5)(3δ(α + 3) − 2δ(α − 2)) dα ,
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and

I6 =
3∫

0

(α − 5)(3δ(α + 3) − 2δ(α − 2)) dα .

Solution. We have I1 = e−2/2 = e−1. I2 = 0 since the integration interval does not include

α = 2. Letting α′ = 2α in I3,

I3 = 1

2

∞∫
−∞

e−|α′/2|δ(α′ + 4) dα′ = 1

2
e−2.

Evaluating I4,

I4 = 5 tan(−4) + 3 · 4

cos(−12) + sin(−2)
= −94.90.

Now I5 = 3(−3 − 5) − 2(2 − 5) = −18 and I6 = −2(2 − 5) = 6. �

By allowing Dirac delta functions, we may let

f (α) = d F(α)

dα
(2.63)

to obtain

b∫
a

g (α) d F(α) =
b∫

a

g (α) f (α) dα . (2.64)

Extreme caution must be used in interpreting the latter integral when F contains a jump at

either a (which should not be included) or at b (which should be included). In particular, since

F(α) =
α∫

−∞
d F(α′) (2.65)

and F is right-continuous, we must use care when evaluating

F(α) =
∫ α

−∞
f (α′)dα′ (2.66)

if f contains Dirac delta functions.
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FIGURE 2.9: Cumulative distribution function and probability density function for

Example 2.4.4

Example 2.4.4. Random variable x has CDF Fx given by

Fx(α) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, α < −2

0.2, −2 ≤ α < −1

0.2 + 0.2(α + 1), −1 ≤ α < 0

0.4 + 0.4α, 0 ≤ α < 1

1, α ≥ 1.

Sketch Fx. Find and sketch the PDF fx .

Solution. Note that each piece of the given CDF is continuous. Examining the endpoints of

each interval reveals that the CDF has discontinuities at α = −2 and at α = 1. The CDF and

PDF are shown in Fig. 2.9. As is common practice, we have shown the Dirac delta functions as

arrows with length corresponding to the area under the delta function. In addition, the weight

(area) is shown next to each delta function. The PDF may be expressed as

fx(α) = 0.2δ(α + 2) + 0.2u(α + 1) + 0.2u(α) − 0.4u(α − 1) + 0.2δ(α − 1).
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The CDF may be expressed as

Fx(α) = 0.2u(α + 2) + 0.2(α + 1)(u(α + 1) − u(α))

+ (0.2 + 0.4α)(u(α) − u(α − 1)) + 0.8u(α − 1).

The reader is encouraged to differentiate the above expression for Fx to obtain fx . It should be

apparent that plotting the CDF and PDF significantly reduces the work involved. �

Example 2.4.5. A coin is tossed n times. The probability of a head on any one toss is p and the

probability of a tail is q , where p + q = 1. Let the RV x be the number of heads in n tosses. Find the

CDF and the PDF for the RV x.

Solution. The PMF for x is

px(α) =

⎧⎪⎨⎪⎩
(

n

k

)
pkq n−k, α = k = 0, 1, . . . , n

0, otherwise.

Consequently, the CDF is

Fx(α) =
N∑

k=0

(n

k

)
pkq n−ku(α − k)

and the PDF is

Fx(α) =
n∑

k=0

(n

k

)
pkq n−kδ(α − k). �

Drill Problem 2.4.1. The CDF of the RV x is given by

Fx(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, α < −2

1

4
+ 1

12
(α + 2), −2 ≤ α < 1

1

2
+ 1

4
(α − 1), 1 ≤ α < 2

1, α ≥ 2.

Evaluate

I1 =
∞∫

−∞
α d Fx(α)

and

I2 =
∞∫

−∞
α2 d Fx(α).

Answers: 1/4, 17/6.
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Drill Problem 2.4.2. Evaluate the following integrals:

I1 =
∞∫

−∞
ln(sin(πα)) du(α − 0.3) ;

I2 =
∞∫

−∞
sin(πα)(du(α) + du(α − 2));

I3 =
∞∫

−∞
2α du(α + 3) ;

and

I4 =
∞∫

−∞
5u(t − 3) du(t + 3) .

Answers: 0, −6, 0, −0.212.

Drill Problem 2.4.3. Evaluate the following integrals:

I1 =
∞∫

−∞
ln(sin(πα))δ(α − 0.3) dα ;

I2 =
∞∫

−∞
sin(πα)(δ(α) + δ(α − 2)) dα ;

I3 =
∞∫

−∞
2αδ(α + 3) dα ;

and

I4 =
∞∫

−∞
5u(t − 3)δ(t + 3) dt .

Answers: 0, −6, 0, −0.212.

Drill Problem 2.4.4. Two balls are selected at random from an urn that contains two blue, three

red, and three green balls. Find the PDF for the random variable x, where x is the number of blue

balls selected.

Answer: fx(α) = 1

28
δ(α − 2) + 3

7
δ(α − 1) + 15

28
δ(α).
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2.5 CONDITIONAL PROBABILITY
In Chapter 1, we discussed conditional probabilities. With events A and B defined on the

probability space (S,F, P ), we defined the probability that event B occurs, given that event A

occurred as

P (B|A) = P (A ∩ B)

P (A)
. (2.67)

Definition 2.5.1. Let x be a RV defined on (S,F, P ), and let B denote the event

B = {ζ : x(ζ ) ≤ α}.

The conditional CDF for the RV x, given event A, is defined by

Fx|A(α|A) = P (A ∩ B)

P (A)
= P ({ζ ∈ S : x(ζ ) ≤ α, ζ ∈ A})

P (A)
. (2.68)

If P (A) = 0 we define Fx|A to be any valid CDF.

If x is a discrete RV, we define the conditional PMF for the RV x, given event A, by

px|A(α|A) = Fx|A(α|A) − Fx|A(α−|A). (2.69)

Similarly, if x is a continuous RV, we define the conditional PDF x, given event A, by

fx|A(α|A) = d Fx|A(α|A)

dα
. (2.70)

Note that the conditional CDF Fx|A is indeed a CDF in its own right; i.e., Fx|A is monotone

nondecreasing, right-continuous, Fx|A(−∞|A) = 0, and Fx|A(∞|A) = 1.

If x is a discrete RV and P (A) �= 0, from (2.69) we have

px|A(α|A) = P (ζ ∈ S : x(ζ ) = α, ζ ∈ A)

P (A)
,

so that

px|A(α|A) =
⎧⎨⎩

px|A(α)

P (A)
, x−1({α}) ⊂ A

0, otherwise.
(2.71)

Similarly, if x is a continuous RV and P (A) �= 0, it follows from (2.70) that

fx|A(α|A) =
⎧⎨⎩

fx(α)

P (A)
, x−1({α}) ⊂ A

0, otherwise.
(2.72)
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Recall the discussion in Section 1.8 that a probability space (A,FA, PA) can be defined such that

all conditional probabilities (given event A) on (S,F, P ) may be computed as unconditional

probabilities on (A,FA, PA). Consequently, all remarks and properties regarding a CDF, PMF,

and PDF are also valid for the corresponding conditional entities. On the probability space

(A,FA, PA) we may define the RV y = x|A with CDF Fy (α) = Fx|A(α|A).

Example 2.5.1. Let the RV x have the PDF

fx(α) =

⎧⎪⎨⎪⎩
1 − α, 0 < α < 1

α − 1, 1 < α < 2

0, otherwise.

Define the events A = {x > 1} and B = {0.5 < x < 1.5}. Find (a) Fx|A(α|A); (b) fx|A(α|A); and

(c) fx|B(α|B).

Solution

(a) By definition,

Fx|A(α|A) = P (x ≤ α, x > 1)

P (A)
= P (1 < x ≤ α)

P (x > 1)
.

Integrating the PDF from 1 to 2 we find that P (A) = P (x > 1) = 0.5, and

Fx|A(α|A) =

⎧⎪⎨⎪⎩
0, α < 1

2(Fx(α) − 0.5) = α2 − 2α + 1, 1 ≤ α < 2

1, α ≥ 2.

(b) Differentiating the result from (a) we obtain

fx|A(α|A) =

⎧⎪⎨⎪⎩
0, α < 1

2α − 2, 1 < α < 2

0, α > 2.

As an alternative, from (2.72) we obtain

fx|A(α|A) =
{

2 fx(α) = 2(α − 1), 1 < α < 2

0, otherwise.

(c) From the given PDF we find P (B) = P (0.5 < x < 1.5) = 0.25. Applying the defini-

tion of conditional CDF, we find

Fx|B(α|B) = P (0.5 < x < min{α, 1.5})
P (B)

.
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FIGURE 2.10: PDFs for Example 2.5.1

Consequently,

fx|B(α|B) = d Fx|B(α|B)

dα
=

⎧⎪⎨⎪⎩
4(1 − α), 0.5 < α < 1

4(α − 1), 1 < α < 1.5

0, otherwise.

The PDFs fx , fx|A, and fx|B are illustrated in Fig. 2.10. �

Example 2.5.2. The spread of an infection in a family is described by the following PMF

P ( Sn+1 = k|Sn and In) =
(

Sn

k

)
q k

n (1 − qn)Sn−k

where n is the sampling interval, Sn+1 is the number of susceptibles during the next sampling interval

and Sn is the number of susceptibles during the current sampling interval, In is the number of infectives

during the current sampling interval, p is the probability of adequate contact between a susceptible and

any infective during one sampling interval, and qn = (1 − p)In is the probability that a susceptible

avoids contact with all infectives. This PMF is called the Reed-Frost model and provides the probability

of a certain number of susceptibles at a particular sampling interval given a certain number of susceptibles

and infectives during the previous sampling internal [2, 10, 14]. If S0 = 5, I0 = 1 and p = 0.2,

find the probability that three additional family members are infected by the third sampling interval.
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Solution. Background for this problem is given in footnote.1 This problem is most easily

visualized using a tree diagram, from which we find

P (S3 = 2) = P (S3 = 2|S1 = 2, S2 = 2) P (S2 = 2|S1 = 2) P (S1 = 2)

+P (S3 = 2|S1 = 3, S2 = 2) P (S2 = 2|S1 = 3) P (S1 = 3)

+P (S3 = 2|S1 = 3, S2 = 3) P (S2 = 3|S1 = 3) P (S1 = 3)

+P (S3 = 2|S1 = 4, S2 = 2) P (S2 = 2|S1 = 4) P (S1 = 4)

+P (S3 = 2|S1 = 4, S2 = 3) P (S2 = 3|S1 = 4) P (S1 = 4)

+P (S3 = 2|S1 = 4, S2 = 4) P (S2 = 4|S1 = 4) P (S1 = 4)

+P (S3 = 2|S1 = 5, S2 = 2) P (S2 = 2|S1 = 5) P (S1 = 5)

+P (S3 = 2|S1 = 5, S2 = 3) P (S2 = 3|S1 = 5) P (S1 = 5)

+P (S3 = 2|S1 = 5, S2 = 4) P (S2 = 4|S1 = 5) P (S1 = 5)

+P (S3 = 2|S1 = 5, S2 = 5) P
(
S2 = 5

∣∣S1 = 5
)

P (S1 = 5)

= 0.64 × 0.64 × 0.0512

+ 0.64 × 0.384 × 0.2048

+ 0.384 × 0.512 × 0.2048

+ 0.64 × 0.1536 × 0.4096

+ 0.384 × 0.4096 × 0.4096

+ 0.1536 × 0.4096 × 0.4096

+ 0.64 × 0.0512 × 0.32768

+ 0.384 × 0.2048 × 0.32768

+ 0.1536 × 0.4096 × 0.32768

+ 0.0512 × 0.32768 × 0.32768

= 0.006710886 + 0.050331648 + 0.040265318 + 0.040265318 + 0.064424509

+ 0.025769804 + 0.010737418 + 0.025769804 + 0.020615843 + 0.005497558

= 0.290388108 �
1The history of infectious or communicable disease modeling dates to 1760 when D. Bernoulli studied the population

dynamics of smallpox with a mathematical model. Little work was done until the early 20th century when Hammer

and Soper presented mathematical models which described the spread of measles in Glasgow Scotland. In 1928,

Kermack and McKendrick (continuous time), and Reed and Frost (discrete time) presented extensions of the work

of Hammer and Soper. Since the 1950s, when Abbey and Bailey presented their work, there has been an epidemic

in work in this area.

Infections are spread by adequate contact between two populations, those who are susceptible and those who

are infected. The Kermack and McKendrick is a continuous deterministic model that describes the spread of an

infection in a large population. The Reed and Frost model is a discrete-time probabilistic model that describes the

spread of an infection in a small population. A discrete-time deterministic extension of the Reed and Frost model is

useful for exploring the spread of an infection in a large population. One reason for utilizing a discrete-time model

rather than a continuous-time model is that recorded data is measured at regular intervals. Another reason is that

extensions to this model are easily accomplished, such as adding a nonzero latent period with a precisely defined

distribution.
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Theorem2.5.1(TotalProbability). Let {Ai}n
i=1 be a partition of S with Ai ∈ F, i = 1, 2, . . . , n,

and let x be a RV defined on the probability space (S,F, P ). Then

Fx(α) =
n∑

i=1

Fx|Ai
(α|Ai )P (Ai ). (2.73)

Here we assume:

1. Uniform mixing.

2. Nonzero latent period (the time elapsed between contact and the actual discharge of the infectious agent).

3. Population is closed and at steady state.

4. Any susceptible individual after contact with an infectious person develops the infection, and is infectious

to others only in the following period, after which they are immune (immune individuals, R, no longer

transmits the agent, and are either temporarily or permanently immune to the disease).

5. Since the person can be infected at any instant during the time period — the average latent period is 1/2 of

the time period, where the length of the time period represents the period of infectivity.

6. Each individual has a fixed probability of coming into adequate contact p with any other specified individual

within one time period.

Note that the probability of adequate contact p can be thought of as

p = average number of adequate contacts

N
.

With

q = 1 − p,

the probability that a susceptible individual does not come into adequate contact is

q In .

The structure of the Reed-Frost model is shown in the following diagram.

Susceptibles
S

Infectives
I

Immunes
R

( )1 nIq−

The Reed-Frost model describes the transfer of S susceptibles, I infectives, and R immunes from state to state at

sampling interval n + 1. After adequate contact with an infective in a given sampling interval, a susceptible will

develop the infection, and be infectious to others only during the subsequent sampling interval, and after which,

becomes immune.

Since order does not matter when a susceptible individual becomes infected, the number of combinations

that Sn survive taken k at a time is (Sn
k ). Then the probability that Sn+1 = k follows as

P ( Sn+1 = k|Sn and In)

(
Sn

k

)
q k

n (1 − qn)Sn−k for k = 0, · · · , Sn.
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If the RV x is discrete, then

px(α) =
n∑

i=1

Px|Ai
(α|Ai )P (Ai ). (2.74)

Similarly, if x is a continuous RV then

fx(α) =
n∑

i=1

fx|Ai
(α|Ai )P (Ai ). (2.75)

Proof. Let event B = {ζ : x(ζ ) ≤ α}, and define Bi = B ∩ Ai . Then {Bi}n
i=1 is a partition of

B and

Fx(α) = P (B) =
n∑

i=1

p(Bi ) =
n∑

i=1

P (B|Ai )P (Ai )

from which the desired results follow. �

Example 2.5.3. Resistors are obtained from one of two resistor manufacturers. Manufacturer 1 is

event A1 and manufacturer 2 is event A2 with probabilities 1/4 and 3/4, respectively. Given the

manufacturer, the conditional PDFs for the resistor values are known as

fr |A1
(α|A1) = 0.01(u(α − 900) − u(α − 1000))

and

fr |A2
(α|A2) = 0.01(u(α − 950) − u(α − 1050)).

Find the PDF of the resistance value.

Solution. From the Theorem of Total Probability, we have

fr (α) = fr |A1
(α|A1)P (A1) + fr |A2

(α|A2)P (A2);

hence,

fr (α) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1/400, 900 < α < 950

1/100, 950 < α < 1000

3/400, 1000 < α < 1050

0, otherwise.

Drill Problem 2.5.1. A discrete RV x has PMF

px(α) =
⎧⎨⎩

1

4
(0.8)α, α = 1, 2, . . .

0, otherwise.



P1: IML

MOBK035-02 MOBK035-Enderle.cls October 5, 2006 18:27

RANDOM VARIABLES 115

Event A = {ζ : 2 < x(ζ ) < 5} and event B = {ζ : x(ζ ) ≥ 3}. Find (a) px|A(3|A), (b)px|B(4|B).

Answers: 0.16, 0.5556.

Drill Problem 2.5.2. The RV x has PDF fx(α) = e−αu(α), event A = {ζ : x(ζ ) > 10}, and

event B = {ζ : −2 < x(ζ ) < 5}. Find fx|A and fx|B .

Answers: e−(α−10)u(α − 10), e−α(u(α) − u(α − 5))/(1 − e−5).

2.6 SUMMARY
In this chapter, we have introduced the concept of a random variable. A random variable is a

mapping which assigns a real number to each outcome in the sample space. Probabilities for

events defined in terms of the random variable x may be computed from the CDF (cumulative

distribution function) for x, defined by

Fx(α) = P ({ζ ∈ S : x(ζ ) ≤ α}). (2.76)

For example, P (a < x(ζ ) ≤ b) = Fx(b) − Fx(a) if b > a , and P (x(ζ ) = a) = Fx(a) − Fx(a−).

Any event of practical interest may be expressed in the form

A =
n⋃

i=1

Ai , (2.77)

where Ai = {x : ai < x ≤ bi} or Ai = {ai}, with Ai ∩ A j = ∅ for i �= j . Then

P (x ∈ A) =
n∑

i=1

P (xε Ai ) =
∫
A

d Fx(α) =
n∑

i=1

∫
Ai

d Fx(α). (2.78)

Consequently, if the CDF is known, no integration is required.

If the CDF Fx is a jump function (piecewise constant), then x is a discrete RV, with PMF

(probability mass function)

px(α) = P (x(ζ ) = α) = Fx(α) − Fx(α−), (2.79)

and

Fx(α) =
∑

α′∈(−∞,α]∩Dx

px(α′), (2.80)

where Dx is the set of points where px(α) �= 0.

If the CDF Fx contains no jumps then (for all practical purposes) x is a continuous RV

with PDF (probability density function)

fx(α) = d Fx(α)

dα
(2.81)



P1: IML

MOBK035-02 MOBK035-Enderle.cls October 5, 2006 18:27

116 BASIC PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

and

Fx(α) =
α∫

−∞
fx(α′) dα′ . (2.82)

The RV x is a mixed RV if it is neither discrete nor continuous. The Lebesgue Decomposition

Theorem can be applied in this case to separate the CDF into discrete and continuous parts.

The Riemann-Stieltjes integral was defined in order to provide a unified analytical frame-

work for treating any type of RV. The Dirac delta function provides a useful alternative—

enabling one to use a Riemann integral and a PDF containing Dirac delta functions in the

mixed or discrete RV cases.

The conditional CDF Fx|A(α|A) was defined as

Fx|A(α|A) = P ({ζ ∈ S : x(ζ ) ≤ α and ζ ∈ A})
P (A)

, (2.83)

along with corresponding conditional PDF fx|A and conditional PMF px|A.

2.7 PROBLEMS
1. Which of the following functions are legitimate CDF’s? Why, or why not?

H1(α) =

⎧⎪⎨⎪⎩
0, α < −1

α2, |α| ≤ 1

1, 1 < α

H2(α) =

⎧⎪⎨⎪⎩
0, α < 0

α2/2, 0 ≤ α ≤ 1

1, 1 < α

H3(α) =

⎧⎪⎨⎪⎩
0, α < 0

sin(α), 0 ≤ α ≤ π/2

1, π/2 < α

H4(α) =
{

0, α ≤ −4

1 − exp(−a(α + 4)), −4 < α

2. The sample space is S = {a1, a2, a3, a4} with probabilities P ({a1}) = 0.15, P ({a2}) =
0.25, P ({a3}) = 0.4 and P ({a4}) = 0.2. A random variable x is defined by x(a1) = 2,
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FIGURE 2.11: Cumulative distribution function for Problem 2.6

x(a2) = −1, x(a3) = 3, and x(a4) = 0. Determine: (a) px(α), (b) x−1((−∞, α]), (c)

x−1([−1, 2]), and (d) Fx(α).

3. Four fair coins are tossed. Let random variable x equal the number of heads tossed.

Determine: (a) px(α), (b) x−1((−∞, α]), and (c) Fx(α).

4. The sample space S = {a1, a2, a3, a4, a5} with probabilities P ({a1}) = 0.15, P ({a2}) =
0.2, P ({a3}) = 0.1, P ({a4}) = 0.25, and P ({a5}) = 0.3. Random variable x is defined

as x(ai ) = 2i − 1. Find: (a) px(α), (b) x−1((−∞, α]), and (c) Fx(α).

5. Let

w(t) =
{

2 − 0.5|t − 5|, |t − 5| ≤ 4

0, |t − 5| > 4

Let S = {0, 1, . . . , 19} and P (ζ = i) = 0.05 for i ∈ S. Let RV x(ζ ) = w(ζ T) for each

ζ ∈ S, where T = 0.5. Sketch the CDF for the RV x.

6. Random variable x has CDF shown in Fig. 2.11. Event A = {ζ ∈ S : x(ζ ) > 0}, event

B = {ζ ∈ S : x(ζ ) ≥ 0}, and event C(α) = {ζ ∈ S : x(ζ ) ≤ α}. Find: (a) P (x = −2),

(b) P (x = −1), (c) P (0 ≤ x < 3), (d) P (−1 < x ≤ 0), (e) P (B|A), (f ) P (A|B). (g)

Find and sketch P (C(α)|A) vs. α.

7. Consider a department in which all of its graduate students range in age from 22 to 28.

Additionally, it is three times as likely a student’s age is from 22 to 24 as from 25 to 28.

Assume equal probabilities within each age group. Let random variable x equal the age

of a graduate student in this department. Determine: (a) px(α), (b) Fx(α).

8. A softball team plays eight games in a season. Assume there are no ties, and that the

team has an equal probability of winning or losing each game. Let random variable x

equal twice the total number of wins in the season. Determine: (a) px(α), (b) Fx(α),

(c) P (4 ≤ x ≤ 12), (d) P (2 < x ≤ 12), (e) P (12 ≤ x ≤ 20), (f ) P (−1 ≤ x ≤ 12).
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9. Which of the following functions are legitimate PDFs? Why? If not, could the function

be a PDF if multiplied by an appropriate constant? Find the constant.

g1(α) =

⎧⎪⎨⎪⎩
0.25, −2 < α < 0

0.5, 1 < α < 3

0, otherwise

g2(α) = e−a |α|, −∞ < α < ∞

g3(α) =
{

|α|, |α| < 1

0, otherwise

g4(α) = sin(πα)

πα
, −∞ < α < ∞

10. Which of the following functions are legitimate PDFs? Why, or why not?

g1(α) =
{

0.75α(2 − α), 0 ≤ α ≤ 2

0, otherwise

g2(α) =
{

0.5e−α, 0 ≤ α < ∞
0, otherwise

g3(α) =
{

2α − 1, 0 ≤ α ≤ 0.5(1 + √
5)

0, otherwise

g4(α) =
{

0.5(α + 1), −1 ≤ α ≤ 1

0, otherwise

11. For the following PDFs, find β, find and sketch the CDF, and then find P (1 ≤ x < 2):

(a) fx(α) = βα2e−3αu(α), (b) fx(α) = β/(1 + α2), (c)

fx(α) =
{

β sin(α), 0 ≤ α ≤ π/2

0, otherwise

12. Can a function be both a PDF and CDF? Why or why not?
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13. The time (in years) before failure, t, for a certain television set is a random variable,

with

ft(t0) = 1

5
e−t0/5u(t0).

Determine: (a) Ft(t0); (b) the probability that the TV set will fail during the first year;

(c) the probability that the TV fails after the 15th year; (d) P (1 < t < 5).

14. The PDF for the time before failure for a piece of equipment is

ft(t0) = βt0 exp(−t0/10)u(t0).

Determine: (a) β; (b) Ft(t0); (c) P (t < 10); (d) P (2 ≤ t < 10).

15. Given CDF

Fx(α) = 1

4
(α + 1)(u(α + 1) − u(α − 2)) +

(
1

2
+ α

8

)
×(u(α − 2) − u(α − 4)) + u(α − 4),

Determine: (a) fx(α), (b) P (1/4 ≤ x < 3).

16. Given

fx(α) =
{

βα1/2, 0 < α < 1

0, otherwise.

Determine: (a) β, (b) Fx(α), (c) P (x ≤ 3/4).

17. Find the CDF for the following PDF

fx(α) =
{

(3α − 1)2, 0 < α < 1

0, otherwise.

18. A fair coin is tossed twice. The RV x is the number of heads. Find and sketch the PMF

and CDF for x.

19. Evaluate

I =
∞∫

−∞

(9 cos(t) + e−t2

)δ(t − 2)

5t2 − tan(t − 1)
dt .

20. A PDF is given by

fx(α) = 1

2
δ(α + 1.5) + 1

8
δ(α) + 3

8
δ(α − 2).

Determine Fx(α).



P1: IML

MOBK035-02 MOBK035-Enderle.cls October 5, 2006 18:27

120 BASIC PROBABILITY THEORY FOR BIOMEDICAL ENGINEERS

21. A PDF is given by

fx(α) = 1

5
δ(α + 1) + 2

5
δ(α) + 3

10
δ(α − 1) + 1

10
δ(α − 2).

Determine Fx(α).

22. A mixed random variable has a CDF given by

Fx(α) =

⎧⎪⎨⎪⎩
0, α < 0

α/4, 0 ≤ α < 1

1 − e−0.6931α, 1 ≤ α.

Determine fx(α).

23. A mixed random variable has a PDF given by

fx(α) = 1

4
δ(α + 1) + 3

8
δ(α − 1) + 1

4
(u(α + 1) − u(α − 0.5)).

Determine: (a) Fx(α), (b) P (−1 ≤ x ≤ 0), (c) fx|x>0(α|x > 0).

24. The random variable x has PMF

px(α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2/13, α = −1

3/13, α = 1

4/13, α = 2

3/13, α = 3

1/13, α = 4.

Event A = {x > 2}. Find (a) Fx(α), (b) px|A(α|A).

25. The waveform w(t) is uniformly sampled every 0.1s from 0 to 3s, where

w(t) =

⎧⎪⎨⎪⎩
3t2, 0 ≤ t ≤ 1

3, 1 < t ≤ 2

9 − 3t, 2 < t ≤ 3.

Event A = {w(t) < 3/2} and event B = {0 < t < 1}. Let the random variable x be

the sample value rounded to the nearest integer. Determine: (a) px(α), (b) Fx(α),

(c) px|A(α|A), (d) Fx|A(α|A), (e) px|B(α|B), (f ) Fx|B(α|B), (g) px|A∩Bc (α|A ∩ Bc ),

(h) Fx|A∩Bc (α|A ∩ Bc ).

26. Suppose the following information is known about the RV x. The range of x is

a subset of integers and event A = {x is even}. Additionally, Fx(0−) = 0, Fx(1−) =
1/8, Fx(4−) = 7/8, Fx(4) = 1, px|A(2|A) = 1/2, and px|Ac (3|Ac ) = 3/4. Determine:

(a) px(α), (b) Fx(α).
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FIGURE 2.12: Target for Problem 2.31

27. Random variable y has the PMF

py (α) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1/8, α = 0

3/16, α = 1

1/4, α = 2

5/16, α = 3

1/8, α = 4.

Random variable w = (y − 2)2 and event A = {y ≥ 2}. Determine: (a) py |A(α|A),

(b) pw(α).

28. Suppose x is a random variable with

px(α) =
{

βγ α, α = 0, 1, 2, . . .

0, otherwise.

where β and γ are constants, and 0 < γ < 1. As a function of γ , determine: (a) β,

(b) Fx(α), (c) Fx|x≤x0
(x0/2|x ≤ x0).

29. The time before failure, t, for a certain television set is a random variable with

ft(to ) = 1

5
e−to /5u(to ).

Event A = {t > 5} and B = {3 < t < 7}. Determine: (a) Ft|A(to |A), (b) ft|B(to |B),

(c) P (B), (d) P (A|B), (e) ft|Ac ∩Bc (to |Ac ∩ Bc ), (f ) P (Ac ∩ B).

30. A random variable x has CDF

Fx(α) =
(

α + 1

2

)
u

(
α + 1

2

)
− αu(α) + 1

4
αu(α − 1) +

(
1

2
− 1

4
α

)
u (α − 2) ,
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FIGURE 2.13: Probability density function for Problem 2.37

and event A = {x ≥ 1}. Find: (a) fx(α), (b) P (0.5 < x ≤ 1.5), (c) Fx|A(α|A),

(d) fx|A(α|A).

31. Judge Rawson, the hanging judge, does not treat criminals lightly. However, she does

offer a pretrial sentence (in years) based on the outcome of a dart thrown at the target

illustrated in Fig. 2.12.

What the defendants do not know is that Judge Rawson is an incredibly accurate

dart thrower. The probability of x years of sentence is the ratio of the area of the band

marked (100 − x) to the total target area.

Determine: (a) the PMF for the sentence length from a dart throw.

Three defendants choose dart sentences. Determine the probability that: (b) none

of the defendants serve time; (c) exactly two of the defendants serve time; (d) each

defendant is given a unique sentence.

32. The head football coach at the renowned Fargo Polytechnic Institute is in serious

trouble. His job security is directly related to the number of football games the team

wins each year. The team has lost its first three games in the eight game schedule. The

coach knows that if the team loses five games, he will be fired immediately. The alumni

α−4 4−2 0 2

xF ( )α

0.6

1

FIGURE 2.14: Cumulative distribution function for Problem 2.38
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hate losing and consider a tie as bad as a loss. Let x be a random variable whose value

equals the number of games the present head coach wins. Assume the probability of

winning any game is 0.6 and independent of the results of other games. Determine: (a)

px(·), (b) Fx(·), (c) px|x>3(α|x > 3).

33. Consider Problem 32. The team loves the head coach and does not want to lose him.

The more desperate the situation becomes for the coach, the better the team plays.

Assume the probability the team wins a game is dependent on the total number of

losses as P (W |L) = 0.2L, where W is the event the team wins a game and L is the

total number of losses for the team. Let A be the event the present head coach is fired

before the last game of the season. Determine: (a) px(·), (b) Fx(·), (c) px|A(α|A).

34. A class contains five students of about equal ability. The probability a student obtains

an A is 1/5, a B is 2/5, and a C is 2/5. Let the random variable x denote the number

of students who earn an A in the class. Determine the PMF for the RV x.

35. Professor Rensselaer has been known to make an occassional blunder during a lecture.

The probability that any one student recognizes the blunder and brings it to the attention

of the class is 0.13. Assume that the behavior of each student is independent of the

behavior of other students. Determine the minimum number of students in the class

to insure the probability that a blunder is corrected is at least 0.98.

36. Consider Problem 35. Suppose there are four students in the class. Determine the

probability that (a) exactly two students recognize a blunder; (b) exactly one student

recognizes each of three blunders; (c) the same student recognizes each of three blunders;

(d) two students recognize the first blunder, one student recognizes the second blunder

and no students recognize the third blunder.

37. Random variable x has PDF shown in Fig. 2.13. Event A = {x : −3 < x < 6}. Find:

(a) Fx , (b) P (−5 < x ≤ 3), (c) Fx|A(α|A), (d) fx|A(α|A).

38. Random variable x has CDF shown in Fig. 2.14. Event A = {x : −2 ≤ x < 4}. Find:

(a) fx , (b) P (−2 ≤ x < 1), (c) Fx|A(α|A), (d) fx|A(α|A).
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